Advertisements
Advertisements
Question
n2 – 1 is divisible by 8, if n is ______.
Options
An integer
A natural number
An odd integer
An even integer
Solution
n2 – 1 is divisible by 8, if n is an odd integer.
Explanation:
Let x = n2 – 1
In the above equation, n can be either even or odd.
Let us assume that n = even.
So, when n = even i.e., n = 2k
Where k is an integer
We get,
`\implies` x = (2k)2 – 1
`\implies` x = 4k2 – 1
At k = – 1,
x = 4(–1)2 – 1
= 4 – 1
= 3, is not divisible by 8.
At k = 0,
x = 4(0)2 – 1
= 0 – 1
= – 1, is not divisible by 8
Let us assume that n = odd:
So, when n = odd
i.e., n = 2k + 1
Where k is an integer
We get,
`\implies` x = 2k + 1
`\implies` x = (2k + 1)2 – 1
`\implies` x = 4k2 + 4k + 1 – 1
`\implies` x = 4k2 + 4k
`\implies` x = 4k(k + 1)
At k = –1, x = 4(–1)(–1 + 1) = 0 which is divisible by 8.
At k = 0, x = 4(0)(0 + 1) = 0 which is divisible by 8.
At k = 1, x = 4(1)(1 + 1) = 8 which is divisible by 8.
From the above two observation
We can conclude that, if n is odd, n2 – 1 is divisible by 8.
APPEARS IN
RELATED QUESTIONS
Check whether 6n can end with the digit 0 for any natural number n.
If the product of two numbers is 1080 and their HCF is 30, find their LCM.
Find the LCM and HCF of the following pair of integers and verify that LCM × HCF = product of the two numbers.
510 and 92
Find the LCM and HCF of the following integers by applying the prime factorisation method.
17, 23 and 29
If two positive integers A and B can be expressed as A = xy3 and B = xiy2z; x, y being prime numbers, the LCM (A, B) is ______.
If LCM(x, 18) = 36 and HCF(x, 18) = 2, then x is ______.
For some integer m, every even integer is of the form ______.
If two positive integers a and b are written as a = x3 y2 and b = xy3; x, y are prime numbers, then HCF (a, b) is ______.
Can two numbers have 18 as their HCF and 380 as their LCM? Give reasons.
The prime factorisation of the number 2304 is ______.