Advertisements
Advertisements
प्रश्न
Prove that Δ∇ = Δ – ∇
बेरीज
उत्तर
L.H.S = Δ∇
= (E – 1)(1 – E–1)
= E – EE–1 + E–1
= E – 1 – 1 – E–1
= E – 2 – E–1 .........(1)
R.H.S = Δ – ∇
= (E – 1) – (1 – E–1)
= E – 1 – 1 + E–1
= E – 2 + E–1 ........(2)
From (1) and (2)
L.H.S = R.H.S
Hence proved.
shaalaa.com
Finite Differences
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Evaluate Δ(log ax)
If y = x3 – x2 + x – 1 calculate the values of y for x = 0, 1, 2, 3, 4, 5 and form the forward differences table
Find the missing entries from the following.
x | 0 | 1 | 2 | 3 | 4 | 5 |
y = f(x) | 0 | - | 8 | 15 | - | 35 |
Choose the correct alternative:
Δf(x) =
Choose the correct alternative:
E ≡
Choose the correct alternative:
If h = 1, then Δ(x2) =
Choose the correct alternative:
If c is a constant then Δc =
Choose the correct alternative:
If m and n are positive integers then Δm Δn f(x)=
Choose the correct alternative:
∇ ≡
Prove that (1 + Δ)(1 – ∇) = 1