Advertisements
Advertisements
प्रश्न
Prove the following:
cos22x − cos26x = sin4x sin8x
उत्तर
L.H.S. = cos22x − cos26x
= (cos 2x)2 − (cos 6x)2
= (cos 2x + cos 6x) (cos 2x − cos 6x)
= `[2cos((2x + 6x)/2) cos((2x - 6x)/2)]*[2sin((2x + 6x)/2)sin((6x - 2x)/2)]`
= [2 cos 4x cos (− 2x)] [2 sin 4x sin 2x]
= (2 cos 4x cos 2x) (2 sin 4x sin 2x)
= (2 sin 2x cos 2x) (2 sin 4x cos 4x)
= sin 4x sin 8x
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following:
`(cos27^circ + sin27^circ)/(cos27^circ - sin27^circ)` = tan72°
Prove the following:
(sin 3x + sin x)sin x + (cos 3x – cos x) cos x = 0
Prove the following:
(cos x + cos y)2 + (sin x – sin y)2 = `4cos^2 ((x + y))/2`
Prove the following:
(cos x – cos y)2 + (sin x – sin y)2 = `4sin^2 ((x - y))/2`
Prove the following:
tan x + cot x = 2 cosec 2x
Prove the following:
16 sin θ cos θ cos 2θ cos 4θ cos 8θ = sin 16θ
Prove the following:
`(tan(theta/2) + cot(theta/2))/(cot(theta/2) - tan(theta/2))` = secθ
Prove the following:
cos7° cos 14° cos28° cos 56° = `sin68^circ/(16cos83^circ)`
Prove the following:
`(sin^2(-160^circ))/(sin^(2)70^circ) + sin(180^circ - theta)/sintheta` = sec220°
Prove the following:
`(2cos 4x + 1)/(2cosx + 1)` = (2 cos x – 1) (2 cos 2x – 1)
Prove the following:
cos2x + cos2(x + 120°) + cos2(x – 120°) = `3/2`
Select the correct option from the given alternatives :
If α + β + γ = π then the value of sin2α + sin2β – sin2γ is equal to …......
Prove the following:
`cos(pi/4 + x) + cos(pi/4 - x) = sqrt(2)cosx`
Prove the following:
`sqrt(3) "cosec"20^circ - sec20^circ` = 4
If `x + 1/x` = 2 cos θ, then `x^n + 1/x^n` is equal to ______.
If `sqrt((1 + cos A)/(1 - cos A)) = x/y`, then the value of tan A is ______.
If cos 2α = `(3 cos 2β - 1)/(3 - cos 2β)`, then tan α is equal to ______.
If tan A and tan B are the roots of x2 – ax + b = 0, then the value of sin2(A + B) is ______.
If sin 4A – cos 2A = cos 4A – sin 2A `("where", 0 < A < π/4)`, then the value of tan 4A is ______.
For any angle θ, the expression `(2 cos 8θ + 1)/(2 cos θ + 1)` is equal to ______.
The value of `(cos^3θ - cos 3θ)/cosθ + (sin^3θ + sin 3θ)/sinθ` is ______.
If sin θ = `1/2` and θ is acute, then (3 cos θ – 4 cos3 θ) is equal to ______.
If θ is acute and `(cos^2θ)/(cot^2 θ - cos^2 θ)` = 3, then θ is equal to ______.
If sin θ = `12/13, (0 < θ < π/2)` and cos `phi = - 3/5, (π < phi < (3π)/2)`. Then, sin(θ + `phi`) will be ______.
`(sin θ + sin 2θ)/(1 + cos θ + cos 2θ)` = ______.
If tan α = `1/7`, tan β = `1/3`, then cos 2α = ______.
The value of `sin π/10` is ______.
The expression `2 cos π/13. cos (9π)/13 + cos (3π)/13 + cos (5π)/13` is equal to ______.