Advertisements
Advertisements
प्रश्न
Prove the following:
cos7° cos 14° cos28° cos 56° = `sin68^circ/(16cos83^circ)`
उत्तर
L.H.S. = cos7° cos 14° cos28° cos 56°
= `1/(2sin7^circ)(2sin 7^circcos 7^circ)cos 14^circ cos 28^circ cos 56^circ`
= `1/(2sin7^circ)(sin 14^circ cos 14^circ cos 28^circ cos 56^circ)` ...[∵ 2 sin θ cos θ = sin 2θ]
= `1/(2(2sin 7^circ))(2 sin 14^circ cos 14^circ)cos 28^circ cos 56^circ`
= `1/(4sin7^circ)(sin 28^circ cos 28^circ cos 56^circ)`
= `1/(2(4sin7^circ))(2sin 28^circ cos 28^circ) cos 56^circ`
= `1/(8sin 7^circ)(sin 56^circ cos 56^circ)`
= `1/(2(8sin 7^circ))(2sin 56^circ cos 56^circ)`
= `1/(16 sin 7^circ)(sin112^circ)`
= `(sin(180^circ - 68^circ))/(16sin(90^circ - 83^circ))`
= `(sin 68^circ)/(16cos 83^circ)`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following:
(cos x + cos y)2 + (sin x – sin y)2 = `4cos^2 ((x + y))/2`
Prove the following:
tan x + cot x = 2 cosec 2x
Prove the following:
16 sin θ cos θ cos 2θ cos 4θ cos 8θ = sin 16θ
Prove the following:
`cosx/(1 + sinx) = (cot(x/2) - 1)/(cot(x/2) + 1)`
Prove the following:
`(tan(theta/2) + cot(theta/2))/(cot(theta/2) - tan(theta/2))` = secθ
Prove the following:
`1/(tan3"A" - tan"A") - 1/(cot3"A" - cot"A")` = cot2A
Prove the following:
`(sin^2(-160^circ))/(sin^(2)70^circ) + sin(180^circ - theta)/sintheta` = sec220°
Prove the following:
`(2cos 4x + 1)/(2cosx + 1)` = (2 cos x – 1) (2 cos 2x – 1)
Prove the following:
cos2x + cos2(x + 120°) + cos2(x – 120°) = `3/2`
Prove the following:
2cosec 2x + cosec x = `secx cot(x/2)`
Prove the following:
`4 cos x. cos(x + pi/3) . cos (x - pi/3)` = cos 3x
Select the correct option from the given alternatives :
The value of cos A cos (60° – A) cos (60° + A) is equal to ......
Select the correct option from the given alternatives :
The value of `sin pi/14sin (3pi)/14sin (5pi)/14sin (7pi)/14sin (9pi)/14sin (11pi)/14sin (13pi)/14` is ....
Select the correct option from the given alternatives :
If α + β + γ = π then the value of sin2α + sin2β – sin2γ is equal to …......
Prove the following:
`(sin5x - 2sin3x + sinx)/(cos5x - cosx)` = tanx
Prove the following:
sin26x − sin24x = sin2x sin10x
Prove the following:
cos22x − cos26x = sin4x sin8x
Prove the following:
cot4x (sin5x + sin3x) = cotx (sin5x − sin3x)
If `x + 1/x` = 2 cos θ, then `x^n + 1/x^n` is equal to ______.
`(1 - tan^2(45^circ - A))/(1 + tan^2(45^circ - A))` is equal to ______.
If sin 4A – cos 2A = cos 4A – sin 2A `("where", 0 < A < π/4)`, then the value of tan 4A is ______.
For any angle θ, the expression `(2 cos 8θ + 1)/(2 cos θ + 1)` is equal to ______.
The value of `(cos^3θ - cos 3θ)/cosθ + (sin^3θ + sin 3θ)/sinθ` is ______.
If tan x = sin 45° cos 45° + sin 30°, then x is equal to ______.
If sin θ = `1/2` and θ is acute, then (3 cos θ – 4 cos3 θ) is equal to ______.
If `tan x + tan(π/3 - x) tan ((2π)/3 + x)` = 3, then ______.
If x sin θ = y cos θ = `(2z tan θ)/(1 - tan^2 θ)`, then 4z2(x2 + y2) is equal to ______.
If sin θ = `12/13, (0 < θ < π/2)` and cos `phi = - 3/5, (π < phi < (3π)/2)`. Then, sin(θ + `phi`) will be ______.
`(sin 3θ - cos 3θ)/(sin θ + cos θ) + 1` = ______.
The value of `sin π/10` is ______.
The value of sin 3A sin3 A + cos 3A cos3 A is ______.
The expression `2 cos π/13. cos (9π)/13 + cos (3π)/13 + cos (5π)/13` is equal to ______.