Advertisements
Advertisements
प्रश्न
Select the correct option from the given alternatives :
The value of `sin pi/14sin (3pi)/14sin (5pi)/14sin (7pi)/14sin (9pi)/14sin (11pi)/14sin (13pi)/14` is ....
पर्याय
`1/16`
`1/64`
`1/128`
`1/256`
उत्तर
`1/64`
Explanation:
`sin pi/14sin (3pi)/14sin (5pi)/14sin (7pi)/14sin (9pi)/14sin (11pi)/14sin (13pi)/14`
= `sin pi/14sin (3pi)/14sin (5pi)/14 xx 1 xx sin(pi - (5pi)/14)sin(pi - (3pi)/14)sin(pi - pi/14) ...[because sin (7pi)/14 = sin pi/2 = 1]`
= `(sin pi/14sin (3pi)/14sin (5pi)/14)^2` ...[∵ sin(π – θ) = sin θ]
`sin pi/14sin (3pi)/14sin (5pi)/14`
= `sin(pi/2 - (3pi)/7)sin(pi/2 - (2pi)/7)sin(pi/2 - pi/7)`
= `cos (3pi)/7 cos (2pi)/7 cos pi/7`
= `1/(2sin(pi/7))[sin((2pi)/7)cos((2pi)/7)]cos (3pi)/7`
= `1/(4sin(pi/7))(sin (4pi)/7) cos(pi - (4pi)/7)`
= `- 1/(4sin(pi/7))(sin (4pi)/7 cos (4pi)/7)`
= `- 1/(8sin(pi/7)) sin((8pi)/7)`
= `-1/(8sin(pi/7)) (-sin(pi/7)) ...[sin((8pi)/7) = sin(pi + pi/7) = -sin(pi/7)]`
= `1/8`
∴ Required expression = `(1/8)^2 = 1/64`
APPEARS IN
संबंधित प्रश्न
Prove the following:
`(cos27^circ + sin27^circ)/(cos27^circ - sin27^circ)` = tan72°
Prove the following:
tan10° + tan35° + tan10°.tan35° = 1
Prove the following:
`(cot"A"cot4"A" + 1)/(cot"A" cot4"A" - 1) = (cos3"A")/(cos5"A")`
Prove the following:
(sin 3x + sin x)sin x + (cos 3x – cos x) cos x = 0
Prove the following:
(cos x + cos y)2 + (sin x – sin y)2 = `4cos^2 ((x + y))/2`
Prove the following:
(cos x – cos y)2 + (sin x – sin y)2 = `4sin^2 ((x - y))/2`
Prove the following:
`cosx/(1 + sinx) = (cot(x/2) - 1)/(cot(x/2) + 1)`
Prove the following:
`1/(tan3"A" - tan"A") - 1/(cot3"A" - cot"A")` = cot2A
Prove the following:
cos7° cos 14° cos28° cos 56° = `sin68^circ/(16cos83^circ)`
Prove the following:
cos2x + cos2(x + 120°) + cos2(x – 120°) = `3/2`
Prove the following:
2cosec 2x + cosec x = `secx cot(x/2)`
Prove the following:
`sinx tan(x/2) + 2cosx = 2/(1 + tan^2(x/2))`
Select the correct option from the given alternatives :
If α + β + γ = π then the value of sin2α + sin2β – sin2γ is equal to …......
Prove the following:
`cos(pi/4 + x) + cos(pi/4 - x) = sqrt(2)cosx`
Prove the following:
cos22x − cos26x = sin4x sin8x
Prove the following:
cot4x (sin5x + sin3x) = cotx (sin5x − sin3x)
cos4 θ – sin4 θ is equal to ______.
`(1 - tan^2(45^circ - A))/(1 + tan^2(45^circ - A))` is equal to ______.
If tan A and tan B are the roots of x2 – ax + b = 0, then the value of sin2(A + B) is ______.
If sin 4A – cos 2A = cos 4A – sin 2A `("where", 0 < A < π/4)`, then the value of tan 4A is ______.
For any angle θ, the expression `(2 cos 8θ + 1)/(2 cos θ + 1)` is equal to ______.
`(sin(90^circ - θ) sin θ)/tanθ + sin^2 θ` is equal to ______.
If sin θ = `1/2` and θ is acute, then (3 cos θ – 4 cos3 θ) is equal to ______.
If θ is acute and `(cos^2θ)/(cot^2 θ - cos^2 θ)` = 3, then θ is equal to ______.
If x sin θ = y cos θ = `(2z tan θ)/(1 - tan^2 θ)`, then 4z2(x2 + y2) is equal to ______.
If sin θ = `12/13, (0 < θ < π/2)` and cos `phi = - 3/5, (π < phi < (3π)/2)`. Then, sin(θ + `phi`) will be ______.
If tan β = cos θ tan α, then `tan^2 θ/2` = ______.
(sec 2A + 1) sec2 A = ______.
The value of `sin π/10` is ______.
The value of cos 6x is equal to ______.
The value of sin 3A sin3 A + cos 3A cos3 A is ______.