मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Select the correct option from the given alternatives : The value of sin π14sin 3π14sin 5π14sin 7π14sin 9π14sin 11π14sin 13π14 is .... - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Select the correct option from the given alternatives :

The value of `sin  pi/14sin  (3pi)/14sin  (5pi)/14sin  (7pi)/14sin  (9pi)/14sin  (11pi)/14sin  (13pi)/14` is ....

पर्याय

  • `1/16`

  • `1/64`

  • `1/128`

  • `1/256`

MCQ

उत्तर

`1/64`

Explanation:

`sin  pi/14sin  (3pi)/14sin  (5pi)/14sin  (7pi)/14sin  (9pi)/14sin  (11pi)/14sin  (13pi)/14`

= `sin  pi/14sin  (3pi)/14sin  (5pi)/14 xx 1 xx sin(pi - (5pi)/14)sin(pi - (3pi)/14)sin(pi - pi/14) ...[because sin  (7pi)/14 = sin  pi/2 = 1]`

= `(sin  pi/14sin  (3pi)/14sin  (5pi)/14)^2` ...[∵ sin(π – θ) = sin θ]

`sin  pi/14sin  (3pi)/14sin  (5pi)/14`

= `sin(pi/2 - (3pi)/7)sin(pi/2 - (2pi)/7)sin(pi/2 - pi/7)`

= `cos  (3pi)/7 cos  (2pi)/7 cos  pi/7`

= `1/(2sin(pi/7))[sin((2pi)/7)cos((2pi)/7)]cos  (3pi)/7`

= `1/(4sin(pi/7))(sin  (4pi)/7) cos(pi - (4pi)/7)`

= `- 1/(4sin(pi/7))(sin  (4pi)/7 cos  (4pi)/7)`

= `- 1/(8sin(pi/7)) sin((8pi)/7)`

= `-1/(8sin(pi/7)) (-sin(pi/7)) ...[sin((8pi)/7) = sin(pi + pi/7) = -sin(pi/7)]`

= `1/8`

∴ Required expression = `(1/8)^2 = 1/64`

shaalaa.com
Trigonometric Functions of Triple Angle
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Trigonometry - 2 - Miscellaneous Exercise 3 [पृष्ठ ५७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 3 Trigonometry - 2
Miscellaneous Exercise 3 | Q I. (vi) | पृष्ठ ५७

संबंधित प्रश्‍न

Prove the following:

`(cos27^circ + sin27^circ)/(cos27^circ - sin27^circ)` = tan72°


Prove the following:

tan10° + tan35° + tan10°.tan35° = 1


Prove the following:

`(cot"A"cot4"A" + 1)/(cot"A" cot4"A" - 1) = (cos3"A")/(cos5"A")`


Prove the following:

(sin 3x + sin x)sin x + (cos 3x – cos x) cos x = 0


Prove the following:

(cos x + cos y)2 + (sin x – sin y)2 = `4cos^2  ((x + y))/2`


Prove the following:

(cos x – cos y)2 + (sin x – sin y)2 = `4sin^2  ((x - y))/2`


Prove the following:

`cosx/(1 + sinx) = (cot(x/2) - 1)/(cot(x/2) + 1)`


Prove the following:

`1/(tan3"A" - tan"A") - 1/(cot3"A" - cot"A")` = cot2A


Prove the following:

cos7° cos 14° cos28° cos 56° = `sin68^circ/(16cos83^circ)`


Prove the following:

cos2x + cos2(x + 120°) + cos2(x – 120°) = `3/2`


Prove the following:

2cosec 2x + cosec x = `secx cot(x/2)`


Prove the following:

`sinx tan(x/2) + 2cosx = 2/(1 + tan^2(x/2))`


Select the correct option from the given alternatives :

If α + β + γ = π then the value of sin2α + sin2β – sin2γ is equal to …......


Prove the following:

`cos(pi/4 + x) + cos(pi/4 - x) = sqrt(2)cosx`


Prove the following:

cos22x − cos26x = sin4x sin8x


Prove the following:

cot4x (sin5x + sin3x) = cotx (sin5x − sin3x)


cos4 θ – sin4 θ is equal to ______.


`(1 - tan^2(45^circ - A))/(1 + tan^2(45^circ - A))` is equal to ______.


If tan A and tan B are the roots of x2 – ax + b = 0, then the value of sin2(A + B) is ______.


If sin 4A – cos 2A = cos 4A – sin 2A `("where", 0 < A < π/4)`, then the value of tan 4A is ______.


For any angle θ, the expression `(2 cos 8θ + 1)/(2 cos θ + 1)` is equal to ______.


`(sin(90^circ - θ) sin θ)/tanθ + sin^2 θ` is equal to ______.


If sin θ = `1/2` and θ is acute, then (3 cos θ – 4 cos3 θ) is equal to ______.


If θ is acute and `(cos^2θ)/(cot^2 θ - cos^2 θ)` = 3, then θ is equal to ______.


If x sin θ = y cos θ = `(2z  tan θ)/(1 - tan^2 θ)`, then 4z2(x2 + y2) is equal to ______.


If sin θ = `12/13, (0 < θ < π/2)` and cos `phi = - 3/5, (π < phi < (3π)/2)`. Then, sin(θ + `phi`) will be ______.


If tan β = cos θ tan α, then `tan^2  θ/2` = ______.


(sec 2A + 1) sec2 A = ______.


The value of `sin  π/10` is ______.


The value of cos 6x is equal to ______.


The value of sin 3A sin3 A + cos 3A cos3 A is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×