Advertisements
Advertisements
Question
Select the correct option from the given alternatives :
The value of `sin pi/14sin (3pi)/14sin (5pi)/14sin (7pi)/14sin (9pi)/14sin (11pi)/14sin (13pi)/14` is ....
Options
`1/16`
`1/64`
`1/128`
`1/256`
Solution
`1/64`
Explanation:
`sin pi/14sin (3pi)/14sin (5pi)/14sin (7pi)/14sin (9pi)/14sin (11pi)/14sin (13pi)/14`
= `sin pi/14sin (3pi)/14sin (5pi)/14 xx 1 xx sin(pi - (5pi)/14)sin(pi - (3pi)/14)sin(pi - pi/14) ...[because sin (7pi)/14 = sin pi/2 = 1]`
= `(sin pi/14sin (3pi)/14sin (5pi)/14)^2` ...[∵ sin(π – θ) = sin θ]
`sin pi/14sin (3pi)/14sin (5pi)/14`
= `sin(pi/2 - (3pi)/7)sin(pi/2 - (2pi)/7)sin(pi/2 - pi/7)`
= `cos (3pi)/7 cos (2pi)/7 cos pi/7`
= `1/(2sin(pi/7))[sin((2pi)/7)cos((2pi)/7)]cos (3pi)/7`
= `1/(4sin(pi/7))(sin (4pi)/7) cos(pi - (4pi)/7)`
= `- 1/(4sin(pi/7))(sin (4pi)/7 cos (4pi)/7)`
= `- 1/(8sin(pi/7)) sin((8pi)/7)`
= `-1/(8sin(pi/7)) (-sin(pi/7)) ...[sin((8pi)/7) = sin(pi + pi/7) = -sin(pi/7)]`
= `1/8`
∴ Required expression = `(1/8)^2 = 1/64`
APPEARS IN
RELATED QUESTIONS
Prove the following:
`(cos27^circ + sin27^circ)/(cos27^circ - sin27^circ)` = tan72°
Prove the following:
tan10° + tan35° + tan10°.tan35° = 1
Prove the following:
`(tan(theta/2) + cot(theta/2))/(cot(theta/2) - tan(theta/2))` = secθ
Prove the following:
`1/(tan3"A" - tan"A") - 1/(cot3"A" - cot"A")` = cot2A
Prove the following:
cos7° cos 14° cos28° cos 56° = `sin68^circ/(16cos83^circ)`
Prove the following:
`(sin^2(-160^circ))/(sin^(2)70^circ) + sin(180^circ - theta)/sintheta` = sec220°
Prove the following:
`(2cos 4x + 1)/(2cosx + 1)` = (2 cos x – 1) (2 cos 2x – 1)
Prove the following:
cos2x + cos2(x + 120°) + cos2(x – 120°) = `3/2`
Prove the following:
2cosec 2x + cosec x = `secx cot(x/2)`
Select the correct option from the given alternatives :
The value of cos A cos (60° – A) cos (60° + A) is equal to ......
Select the correct option from the given alternatives :
If α + β + γ = π then the value of sin2α + sin2β – sin2γ is equal to …......
Prove the following:
`(sin5x - 2sin3x + sinx)/(cos5x - cosx)` = tanx
Prove the following:
sin26x − sin24x = sin2x sin10x
Prove the following:
cos22x − cos26x = sin4x sin8x
Prove the following:
`sqrt(3) "cosec"20^circ - sec20^circ` = 4
`(1 - tan^2(45^circ - A))/(1 + tan^2(45^circ - A))` is equal to ______.
For any angle θ, the expression `(2 cos 8θ + 1)/(2 cos θ + 1)` is equal to ______.
The value of `(cos^3θ - cos 3θ)/cosθ + (sin^3θ + sin 3θ)/sinθ` is ______.
If tan x = sin 45° cos 45° + sin 30°, then x is equal to ______.
`(sin(90^circ - θ) sin θ)/tanθ + sin^2 θ` is equal to ______.
If sin θ = `1/2` and θ is acute, then (3 cos θ – 4 cos3 θ) is equal to ______.
If θ is acute and `(cos^2θ)/(cot^2 θ - cos^2 θ)` = 3, then θ is equal to ______.
The value of `(1 + cos π/6)(1 + cos π/3)(1 + cos (2π)/3)(1 + cos (7π)/6)` is equal to ______.
If `tan x + tan(π/3 - x) tan ((2π)/3 + x)` = 3, then ______.
If sin θ = `12/13, (0 < θ < π/2)` and cos `phi = - 3/5, (π < phi < (3π)/2)`. Then, sin(θ + `phi`) will be ______.
If `(2 sin α)/({1 + cos α + sin α})` = y, then `({1 - cos α + sin α})/(1 + sin α)` = ______.
`(sin 3θ - cos 3θ)/(sin θ + cos θ) + 1` = ______.
If tan β = cos θ tan α, then `tan^2 θ/2` = ______.
(sec 2A + 1) sec2 A = ______.
The value of `sin π/10` is ______.