English

Select the correct option from the given alternatives : The value of sin π14sin 3π14sin 5π14sin 7π14sin 9π14sin 11π14sin 13π14 is .... - Mathematics and Statistics

Advertisements
Advertisements

Question

Select the correct option from the given alternatives :

The value of `sin  pi/14sin  (3pi)/14sin  (5pi)/14sin  (7pi)/14sin  (9pi)/14sin  (11pi)/14sin  (13pi)/14` is ....

Options

  • `1/16`

  • `1/64`

  • `1/128`

  • `1/256`

MCQ

Solution

`1/64`

Explanation:

`sin  pi/14sin  (3pi)/14sin  (5pi)/14sin  (7pi)/14sin  (9pi)/14sin  (11pi)/14sin  (13pi)/14`

= `sin  pi/14sin  (3pi)/14sin  (5pi)/14 xx 1 xx sin(pi - (5pi)/14)sin(pi - (3pi)/14)sin(pi - pi/14) ...[because sin  (7pi)/14 = sin  pi/2 = 1]`

= `(sin  pi/14sin  (3pi)/14sin  (5pi)/14)^2` ...[∵ sin(π – θ) = sin θ]

`sin  pi/14sin  (3pi)/14sin  (5pi)/14`

= `sin(pi/2 - (3pi)/7)sin(pi/2 - (2pi)/7)sin(pi/2 - pi/7)`

= `cos  (3pi)/7 cos  (2pi)/7 cos  pi/7`

= `1/(2sin(pi/7))[sin((2pi)/7)cos((2pi)/7)]cos  (3pi)/7`

= `1/(4sin(pi/7))(sin  (4pi)/7) cos(pi - (4pi)/7)`

= `- 1/(4sin(pi/7))(sin  (4pi)/7 cos  (4pi)/7)`

= `- 1/(8sin(pi/7)) sin((8pi)/7)`

= `-1/(8sin(pi/7)) (-sin(pi/7)) ...[sin((8pi)/7) = sin(pi + pi/7) = -sin(pi/7)]`

= `1/8`

∴ Required expression = `(1/8)^2 = 1/64`

shaalaa.com
Trigonometric Functions of Triple Angle
  Is there an error in this question or solution?
Chapter 3: Trigonometry - 2 - Miscellaneous Exercise 3 [Page 57]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 3 Trigonometry - 2
Miscellaneous Exercise 3 | Q I. (vi) | Page 57

RELATED QUESTIONS

Prove the following:

`(cos27^circ + sin27^circ)/(cos27^circ - sin27^circ)` = tan72°


Prove the following:

tan10° + tan35° + tan10°.tan35° = 1


Prove the following:

`(tan(theta/2) + cot(theta/2))/(cot(theta/2) - tan(theta/2))` = secθ


Prove the following:

`1/(tan3"A" - tan"A") - 1/(cot3"A" - cot"A")` = cot2A


Prove the following:

cos7° cos 14° cos28° cos 56° = `sin68^circ/(16cos83^circ)`


Prove the following:

`(sin^2(-160^circ))/(sin^(2)70^circ) + sin(180^circ - theta)/sintheta` = sec220°


Prove the following:

`(2cos 4x + 1)/(2cosx + 1)` = (2 cos x – 1) (2 cos 2x – 1)


Prove the following:

cos2x + cos2(x + 120°) + cos2(x – 120°) = `3/2`


Prove the following:

2cosec 2x + cosec x = `secx cot(x/2)`


Select the correct option from the given alternatives :

The value of cos A cos (60° – A) cos (60° + A) is equal to ......


Select the correct option from the given alternatives :

If α + β + γ = π then the value of sin2α + sin2β – sin2γ is equal to …......


Prove the following:

`(sin5x - 2sin3x + sinx)/(cos5x - cosx)` = tanx


Prove the following:

sin26x − sin24x = sin2x sin10x


Prove the following:

cos22x − cos26x = sin4x sin8x


Prove the following:

`sqrt(3)  "cosec"20^circ - sec20^circ` = 4


`(1 - tan^2(45^circ - A))/(1 + tan^2(45^circ - A))` is equal to ______.


For any angle θ, the expression `(2 cos 8θ + 1)/(2 cos θ + 1)` is equal to ______.


The value of `(cos^3θ - cos 3θ)/cosθ + (sin^3θ + sin 3θ)/sinθ` is ______.


If tan x = sin 45° cos 45° + sin 30°, then x is equal to ______.


`(sin(90^circ - θ) sin θ)/tanθ + sin^2 θ` is equal to ______.


If sin θ = `1/2` and θ is acute, then (3 cos θ – 4 cos3 θ) is equal to ______.


If θ is acute and `(cos^2θ)/(cot^2 θ - cos^2 θ)` = 3, then θ is equal to ______.


The value of `(1 + cos  π/6)(1 + cos  π/3)(1 + cos  (2π)/3)(1 + cos  (7π)/6)` is equal to ______.


If `tan x + tan(π/3 - x) tan ((2π)/3 + x)` = 3, then ______.


If sin θ = `12/13, (0 < θ < π/2)` and cos `phi = - 3/5, (π < phi < (3π)/2)`. Then, sin(θ + `phi`) will be ______.


If `(2 sin α)/({1 + cos α + sin α})` = y, then `({1 - cos α + sin α})/(1 + sin α)` = ______.


`(sin 3θ - cos 3θ)/(sin θ + cos θ) + 1` = ______.


If tan β = cos θ tan α, then `tan^2  θ/2` = ______.


(sec 2A + 1) sec2 A = ______.


The value of `sin  π/10` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×