Advertisements
Advertisements
Question
Prove the following:
cos7° cos 14° cos28° cos 56° = `sin68^circ/(16cos83^circ)`
Solution
L.H.S. = cos7° cos 14° cos28° cos 56°
= `1/(2sin7^circ)(2sin 7^circcos 7^circ)cos 14^circ cos 28^circ cos 56^circ`
= `1/(2sin7^circ)(sin 14^circ cos 14^circ cos 28^circ cos 56^circ)` ...[∵ 2 sin θ cos θ = sin 2θ]
= `1/(2(2sin 7^circ))(2 sin 14^circ cos 14^circ)cos 28^circ cos 56^circ`
= `1/(4sin7^circ)(sin 28^circ cos 28^circ cos 56^circ)`
= `1/(2(4sin7^circ))(2sin 28^circ cos 28^circ) cos 56^circ`
= `1/(8sin 7^circ)(sin 56^circ cos 56^circ)`
= `1/(2(8sin 7^circ))(2sin 56^circ cos 56^circ)`
= `1/(16 sin 7^circ)(sin112^circ)`
= `(sin(180^circ - 68^circ))/(16sin(90^circ - 83^circ))`
= `(sin 68^circ)/(16cos 83^circ)`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following:
`(cos27^circ + sin27^circ)/(cos27^circ - sin27^circ)` = tan72°
Prove the following:
(sin 3x + sin x)sin x + (cos 3x – cos x) cos x = 0
Prove the following:
tan x + cot x = 2 cosec 2x
Prove the following:
`1/(tan3"A" - tan"A") - 1/(cot3"A" - cot"A")` = cot2A
Prove the following:
cos2x + cos2(x + 120°) + cos2(x – 120°) = `3/2`
Prove the following:
2cosec 2x + cosec x = `secx cot(x/2)`
Prove the following:
`4 cos x. cos(x + pi/3) . cos (x - pi/3)` = cos 3x
Prove the following:
`sinx tan(x/2) + 2cosx = 2/(1 + tan^2(x/2))`
Select the correct option from the given alternatives :
The value of cos A cos (60° – A) cos (60° + A) is equal to ......
Select the correct option from the given alternatives :
The value of `sin pi/14sin (3pi)/14sin (5pi)/14sin (7pi)/14sin (9pi)/14sin (11pi)/14sin (13pi)/14` is ....
Select the correct option from the given alternatives :
If α + β + γ = π then the value of sin2α + sin2β – sin2γ is equal to …......
Prove the following:
`cos(pi/4 + x) + cos(pi/4 - x) = sqrt(2)cosx`
Prove the following:
`(sin5x - 2sin3x + sinx)/(cos5x - cosx)` = tanx
Prove the following:
sin26x − sin24x = sin2x sin10x
cos4 θ – sin4 θ is equal to ______.
Let α and β be such that π < α – β < 3π. If sin α + sin β = `- 21/65` and cos α + cos β = `-27/65`, then the value of `cos ((α - β))/2` is ______.
If cos 2α = `(3 cos 2β - 1)/(3 - cos 2β)`, then tan α is equal to ______.
If tan A and tan B are the roots of x2 – ax + b = 0, then the value of sin2(A + B) is ______.
If sin 4A – cos 2A = cos 4A – sin 2A `("where", 0 < A < π/4)`, then the value of tan 4A is ______.
For any angle θ, the expression `(2 cos 8θ + 1)/(2 cos θ + 1)` is equal to ______.
cot x . cot 2x – cot 2x . cot 3x – cot 3x . cot x is equal to ______.
If sin θ = `1/2` and θ is acute, then (3 cos θ – 4 cos3 θ) is equal to ______.
The value of `(1 + cos π/6)(1 + cos π/3)(1 + cos (2π)/3)(1 + cos (7π)/6)` is equal to ______.
If `(2 sin α)/({1 + cos α + sin α})` = y, then `({1 - cos α + sin α})/(1 + sin α)` = ______.
`(sin θ + sin 2θ)/(1 + cos θ + cos 2θ)` = ______.
`(sin 3θ - cos 3θ)/(sin θ + cos θ) + 1` = ______.
If tan α = `1/7`, tan β = `1/3`, then cos 2α = ______.
(sec 2A + 1) sec2 A = ______.
2 sin A cos3 A – 2 sin3 A cos A = ______.
The value of cos 6x is equal to ______.
The value of sin 3A sin3 A + cos 3A cos3 A is ______.
The expression `2 cos π/13. cos (9π)/13 + cos (3π)/13 + cos (5π)/13` is equal to ______.