Advertisements
Advertisements
Question
Prove the following:
cos2x + cos2(x + 120°) + cos2(x – 120°) = `3/2`
Solution
L.H.S. = cos2x + cos2(x + 120°) + cos2(x – 120°)
= `(1 + cos 2x)/2 + (1 + cos2(x + 120^circ))/2 + (1 + cos2(x - 120^circ))/2` ......`[∵ cos^2θ = (1+cos2θ)/2]`
`=3/2 + 1/2[cos2x + cos(2x + 240^circ)+cos(2x-240°)]`
= `3/2 + 1/2(cos2x + cos2x cos 240^circ-sin2x sin240°+cos2x cos240°+sin2x sin240°)`
= `3/2+1/2(cos2x+2cos2x cos240°)`
= `3/2 + 1/2[cos 2x +2 cos2x cos(180° + 60°)]`
= `3/2 + 1/2[cos2x + 2cos2x(- cos 60^circ)]`
= `3/2 + 1/2[cos2x - 2cos2x (1/2)]`
= `3/2+1/2(cos2x-cos2x)`
= `3/2+1/2(0)`
= `3/2`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following:
`(cos27^circ + sin27^circ)/(cos27^circ - sin27^circ)` = tan72°
Prove the following:
tan10° + tan35° + tan10°.tan35° = 1
Prove the following:
`(cot"A"cot4"A" + 1)/(cot"A" cot4"A" - 1) = (cos3"A")/(cos5"A")`
Prove the following:
(sin 3x + sin x)sin x + (cos 3x – cos x) cos x = 0
Prove the following:
(cos x – cos y)2 + (sin x – sin y)2 = `4sin^2 ((x - y))/2`
Prove the following:
tan x + cot x = 2 cosec 2x
Prove the following:
16 sin θ cos θ cos 2θ cos 4θ cos 8θ = sin 16θ
Prove the following:
`cosx/(1 + sinx) = (cot(x/2) - 1)/(cot(x/2) + 1)`
Prove the following:
`(tan(theta/2) + cot(theta/2))/(cot(theta/2) - tan(theta/2))` = secθ
Prove the following:
`1/(tan3"A" - tan"A") - 1/(cot3"A" - cot"A")` = cot2A
Prove the following:
`(sin^2(-160^circ))/(sin^(2)70^circ) + sin(180^circ - theta)/sintheta` = sec220°
Prove the following:
2cosec 2x + cosec x = `secx cot(x/2)`
Prove the following:
`sinx tan(x/2) + 2cosx = 2/(1 + tan^2(x/2))`
Select the correct option from the given alternatives :
The value of cos A cos (60° – A) cos (60° + A) is equal to ......
Select the correct option from the given alternatives :
The value of `sin pi/14sin (3pi)/14sin (5pi)/14sin (7pi)/14sin (9pi)/14sin (11pi)/14sin (13pi)/14` is ....
Prove the following:
sin26x − sin24x = sin2x sin10x
Prove the following:
cot4x (sin5x + sin3x) = cotx (sin5x − sin3x)
cos4 θ – sin4 θ is equal to ______.
Let α and β be such that π < α – β < 3π. If sin α + sin β = `- 21/65` and cos α + cos β = `-27/65`, then the value of `cos ((α - β))/2` is ______.
If `x + 1/x` = 2 cos θ, then `x^n + 1/x^n` is equal to ______.
If cos 2α = `(3 cos 2β - 1)/(3 - cos 2β)`, then tan α is equal to ______.
If sin 4A – cos 2A = cos 4A – sin 2A `("where", 0 < A < π/4)`, then the value of tan 4A is ______.
For any angle θ, the expression `(2 cos 8θ + 1)/(2 cos θ + 1)` is equal to ______.
The value of `(cos^3θ - cos 3θ)/cosθ + (sin^3θ + sin 3θ)/sinθ` is ______.
cot x . cot 2x – cot 2x . cot 3x – cot 3x . cot x is equal to ______.
If tan x = sin 45° cos 45° + sin 30°, then x is equal to ______.
If θ is acute and `(cos^2θ)/(cot^2 θ - cos^2 θ)` = 3, then θ is equal to ______.
If `tan x + tan(π/3 - x) tan ((2π)/3 + x)` = 3, then ______.
If x sin θ = y cos θ = `(2z tan θ)/(1 - tan^2 θ)`, then 4z2(x2 + y2) is equal to ______.
If tan α = `1/7`, tan β = `1/3`, then cos 2α = ______.
2 sin A cos3 A – 2 sin3 A cos A = ______.
The value of sin 3A sin3 A + cos 3A cos3 A is ______.
The expression `2 cos π/13. cos (9π)/13 + cos (3π)/13 + cos (5π)/13` is equal to ______.