English

Prove the following: 2cosec 2x + cosec x = secxcot(x2) - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove the following:

2cosec 2x + cosec x = `secx cot(x/2)`

Sum

Solution

L.H.S. = 2cosec 2x + cosec x

= `2/(sin2x) + 1/sinx`

= `2/(2sin x cosx) + 1/sinx`

= `1/(sinx cosx) + 1/sinx`

= `(1 + cosx)/(sinx cosx)`

= `(2cos^2(x/2))/([2sin(x/2)cos(x/2)]cosx`

= `1/cosx * (cos(x/2))/(sin(x/2)`

= `sec x cot (x/2)`

= R.H.S.

shaalaa.com
Trigonometric Functions of Triple Angle
  Is there an error in this question or solution?
Chapter 3: Trigonometry - 2 - Exercise 3.3 [Page 48]

APPEARS IN

RELATED QUESTIONS

Prove the following:

`(cot"A"cot4"A" + 1)/(cot"A" cot4"A" - 1) = (cos3"A")/(cos5"A")`


Prove the following:

(cos x + cos y)2 + (sin x – sin y)2 = `4cos^2  ((x + y))/2`


Prove the following:

(cos x – cos y)2 + (sin x – sin y)2 = `4sin^2  ((x - y))/2`


Prove the following:

tan x + cot x = 2 cosec 2x


Prove the following:

16 sin θ cos θ cos 2θ cos 4θ cos 8θ = sin 16θ


Prove the following:

`(tan(theta/2) + cot(theta/2))/(cot(theta/2) - tan(theta/2))` = secθ


Prove the following:

`1/(tan3"A" - tan"A") - 1/(cot3"A" - cot"A")` = cot2A


Prove the following:

cos2x + cos2(x + 120°) + cos2(x – 120°) = `3/2`


Prove the following:

`4 cos x. cos(x + pi/3) . cos (x - pi/3)` = cos 3x


Prove the following:

`sinx tan(x/2) + 2cosx = 2/(1 + tan^2(x/2))`


Select the correct option from the given alternatives :

The value of `sin  pi/14sin  (3pi)/14sin  (5pi)/14sin  (7pi)/14sin  (9pi)/14sin  (11pi)/14sin  (13pi)/14` is ....


Prove the following:

`cos(pi/4 + x) + cos(pi/4 - x) = sqrt(2)cosx`


Prove the following:

`(sin5x - 2sin3x + sinx)/(cos5x - cosx)` = tanx


Prove the following:

sin26x − sin24x = sin2x sin10x


Prove the following:

cot4x (sin5x + sin3x) = cotx (sin5x − sin3x)


cos4 θ – sin4 θ is equal to ______.


Let α and β be such that π < α – β < 3π. If sin α + sin β = `- 21/65` and cos α + cos β = `-27/65`, then the value of `cos  ((α - β))/2` is ______.


If `x + 1/x` = 2 cos θ, then `x^n + 1/x^n` is equal to ______.


If tan A and tan B are the roots of x2 – ax + b = 0, then the value of sin2(A + B) is ______.


For any angle θ, the expression `(2 cos 8θ + 1)/(2 cos θ + 1)` is equal to ______.


If tan x = sin 45° cos 45° + sin 30°, then x is equal to ______.


`(sin(90^circ - θ) sin θ)/tanθ + sin^2 θ` is equal to ______.


If sin θ = `1/2` and θ is acute, then (3 cos θ – 4 cos3 θ) is equal to ______.


If `tan x + tan(π/3 - x) tan ((2π)/3 + x)` = 3, then ______.


If x sin θ = y cos θ = `(2z  tan θ)/(1 - tan^2 θ)`, then 4z2(x2 + y2) is equal to ______.


If sin θ = `12/13, (0 < θ < π/2)` and cos `phi = - 3/5, (π < phi < (3π)/2)`. Then, sin(θ + `phi`) will be ______.


If `(2 sin α)/({1 + cos α + sin α})` = y, then `({1 - cos α + sin α})/(1 + sin α)` = ______.


`(sin 3θ - cos 3θ)/(sin θ + cos θ) + 1` = ______.


(sec 2A + 1) sec2 A = ______.


2 sin A cos3 A – 2 sin3 A cos A = ______.


The value of sin 3A sin3 A + cos 3A cos3 A is ______.


The expression `2 cos  π/13. cos  (9π)/13 + cos  (3π)/13 + cos  (5π)/13` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×