Advertisements
Advertisements
Question
Prove the following:
`cos(pi/4 + x) + cos(pi/4 - x) = sqrt(2)cosx`
Solution
L.H.S. = `cos(pi/4 + x) + cos(pi/4 - x)`
= `2cos([pi/4 + x + pi/4 - x)/2)cos((pi/4 + x - (pi/4 - x))/2)`
= `2cos pi/4 cosx`
= `2(1/sqrt(2))cosx`
= `sqrt(2)cosx`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following:
`(cos27^circ + sin27^circ)/(cos27^circ - sin27^circ)` = tan72°
Prove the following:
tan10° + tan35° + tan10°.tan35° = 1
Prove the following:
`(cot"A"cot4"A" + 1)/(cot"A" cot4"A" - 1) = (cos3"A")/(cos5"A")`
Prove the following:
(cos x + cos y)2 + (sin x – sin y)2 = `4cos^2 ((x + y))/2`
Prove the following:
(cos x – cos y)2 + (sin x – sin y)2 = `4sin^2 ((x - y))/2`
Prove the following:
`cosx/(1 + sinx) = (cot(x/2) - 1)/(cot(x/2) + 1)`
Prove the following:
`(tan(theta/2) + cot(theta/2))/(cot(theta/2) - tan(theta/2))` = secθ
Prove the following:
cos7° cos 14° cos28° cos 56° = `sin68^circ/(16cos83^circ)`
Prove the following:
`(sin^2(-160^circ))/(sin^(2)70^circ) + sin(180^circ - theta)/sintheta` = sec220°
Prove the following:
`(2cos 4x + 1)/(2cosx + 1)` = (2 cos x – 1) (2 cos 2x – 1)
Prove the following:
`4 cos x. cos(x + pi/3) . cos (x - pi/3)` = cos 3x
Prove the following:
`(sin5x - 2sin3x + sinx)/(cos5x - cosx)` = tanx
Prove the following:
cot4x (sin5x + sin3x) = cotx (sin5x − sin3x)
Prove the following:
`sqrt(3) "cosec"20^circ - sec20^circ` = 4
cos4 θ – sin4 θ is equal to ______.
`sqrt(3) "cosec" 20^circ - sec 20^circ` is equal to ______.
Let α and β be such that π < α – β < 3π. If sin α + sin β = `- 21/65` and cos α + cos β = `-27/65`, then the value of `cos ((α - β))/2` is ______.
If `x + 1/x` = 2 cos θ, then `x^n + 1/x^n` is equal to ______.
`(1 - tan^2(45^circ - A))/(1 + tan^2(45^circ - A))` is equal to ______.
If `sqrt((1 + cos A)/(1 - cos A)) = x/y`, then the value of tan A is ______.
If cos 2α = `(3 cos 2β - 1)/(3 - cos 2β)`, then tan α is equal to ______.
If sin 4A – cos 2A = cos 4A – sin 2A `("where", 0 < A < π/4)`, then the value of tan 4A is ______.
If tan x = sin 45° cos 45° + sin 30°, then x is equal to ______.
If sin θ = `1/2` and θ is acute, then (3 cos θ – 4 cos3 θ) is equal to ______.
If θ is acute and `(cos^2θ)/(cot^2 θ - cos^2 θ)` = 3, then θ is equal to ______.
If `tan x + tan(π/3 - x) tan ((2π)/3 + x)` = 3, then ______.
If `(2 sin α)/({1 + cos α + sin α})` = y, then `({1 - cos α + sin α})/(1 + sin α)` = ______.
If tan α = `1/7`, tan β = `1/3`, then cos 2α = ______.
If tan β = cos θ tan α, then `tan^2 θ/2` = ______.
2 sin A cos3 A – 2 sin3 A cos A = ______.