Advertisements
Advertisements
Question
Prove the following:
`cosx/(1 + sinx) = (cot(x/2) - 1)/(cot(x/2) + 1)`
Solution
L.H.S. = `cosx/(1 + sinx)`
= `(cos^2(x/2) - sin^2(x/2))/(cos^2(x/2) + sin^2(x/2) + 2sin(x/2)cos(x/2))`
= `([cos(x/2) - sin(x/2)][cos(x/2) + sin(x/2)])/[cos(x/2) + sin(x/2)]^2`
= `(cos(x/2) - sin(x/2))/(cos(x/2) + sin(x/2)`
= `(cos(x/2)/(sin(x/2)) - (sin(x/2))/(sin(x/2)))/(cos(x/2)/(sin(x/2)) + sin(x/2)/(sin(x/2))`
= `(cot(x/2) - 1)/(cot(x/2) + 1)`
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Prove the following:
`(cos27^circ + sin27^circ)/(cos27^circ - sin27^circ)` = tan72°
Prove the following:
`(cot"A"cot4"A" + 1)/(cot"A" cot4"A" - 1) = (cos3"A")/(cos5"A")`
Prove the following:
(cos x + cos y)2 + (sin x – sin y)2 = `4cos^2 ((x + y))/2`
Prove the following:
(cos x – cos y)2 + (sin x – sin y)2 = `4sin^2 ((x - y))/2`
Prove the following:
tan x + cot x = 2 cosec 2x
Prove the following:
16 sin θ cos θ cos 2θ cos 4θ cos 8θ = sin 16θ
Prove the following:
`(tan(theta/2) + cot(theta/2))/(cot(theta/2) - tan(theta/2))` = secθ
Prove the following:
`(sin^2(-160^circ))/(sin^(2)70^circ) + sin(180^circ - theta)/sintheta` = sec220°
Prove the following:
cos2x + cos2(x + 120°) + cos2(x – 120°) = `3/2`
Prove the following:
2cosec 2x + cosec x = `secx cot(x/2)`
Prove the following:
`sinx tan(x/2) + 2cosx = 2/(1 + tan^2(x/2))`
Select the correct option from the given alternatives :
The value of cos A cos (60° – A) cos (60° + A) is equal to ......
Select the correct option from the given alternatives :
The value of `sin pi/14sin (3pi)/14sin (5pi)/14sin (7pi)/14sin (9pi)/14sin (11pi)/14sin (13pi)/14` is ....
Prove the following:
cos22x − cos26x = sin4x sin8x
Prove the following:
cot4x (sin5x + sin3x) = cotx (sin5x − sin3x)
cos4 θ – sin4 θ is equal to ______.
`sqrt(3) "cosec" 20^circ - sec 20^circ` is equal to ______.
Let α and β be such that π < α – β < 3π. If sin α + sin β = `- 21/65` and cos α + cos β = `-27/65`, then the value of `cos ((α - β))/2` is ______.
If `x + 1/x` = 2 cos θ, then `x^n + 1/x^n` is equal to ______.
`(1 - tan^2(45^circ - A))/(1 + tan^2(45^circ - A))` is equal to ______.
If sin 4A – cos 2A = cos 4A – sin 2A `("where", 0 < A < π/4)`, then the value of tan 4A is ______.
For any angle θ, the expression `(2 cos 8θ + 1)/(2 cos θ + 1)` is equal to ______.
If tan x = sin 45° cos 45° + sin 30°, then x is equal to ______.
If sin θ = `1/2` and θ is acute, then (3 cos θ – 4 cos3 θ) is equal to ______.
If θ is acute and `(cos^2θ)/(cot^2 θ - cos^2 θ)` = 3, then θ is equal to ______.
If `tan x + tan(π/3 - x) tan ((2π)/3 + x)` = 3, then ______.
If `(2 sin α)/({1 + cos α + sin α})` = y, then `({1 - cos α + sin α})/(1 + sin α)` = ______.
`(sin θ + sin 2θ)/(1 + cos θ + cos 2θ)` = ______.
If tan α = `1/7`, tan β = `1/3`, then cos 2α = ______.
If tan β = cos θ tan α, then `tan^2 θ/2` = ______.
(sec 2A + 1) sec2 A = ______.
2 sin A cos3 A – 2 sin3 A cos A = ______.
The value of `sin π/10` is ______.
The value of cos 6x is equal to ______.