Advertisements
Advertisements
प्रश्न
Prove the following:
`cosx/(1 + sinx) = (cot(x/2) - 1)/(cot(x/2) + 1)`
उत्तर
L.H.S. = `cosx/(1 + sinx)`
= `(cos^2(x/2) - sin^2(x/2))/(cos^2(x/2) + sin^2(x/2) + 2sin(x/2)cos(x/2))`
= `([cos(x/2) - sin(x/2)][cos(x/2) + sin(x/2)])/[cos(x/2) + sin(x/2)]^2`
= `(cos(x/2) - sin(x/2))/(cos(x/2) + sin(x/2)`
= `(cos(x/2)/(sin(x/2)) - (sin(x/2))/(sin(x/2)))/(cos(x/2)/(sin(x/2)) + sin(x/2)/(sin(x/2))`
= `(cot(x/2) - 1)/(cot(x/2) + 1)`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following:
`(cos27^circ + sin27^circ)/(cos27^circ - sin27^circ)` = tan72°
Prove the following:
`(cot"A"cot4"A" + 1)/(cot"A" cot4"A" - 1) = (cos3"A")/(cos5"A")`
Prove the following:
(cos x + cos y)2 + (sin x – sin y)2 = `4cos^2 ((x + y))/2`
Prove the following:
(cos x – cos y)2 + (sin x – sin y)2 = `4sin^2 ((x - y))/2`
Prove the following:
tan x + cot x = 2 cosec 2x
Prove the following:
16 sin θ cos θ cos 2θ cos 4θ cos 8θ = sin 16θ
Prove the following:
`(tan(theta/2) + cot(theta/2))/(cot(theta/2) - tan(theta/2))` = secθ
Prove the following:
cos7° cos 14° cos28° cos 56° = `sin68^circ/(16cos83^circ)`
Prove the following:
`(sin^2(-160^circ))/(sin^(2)70^circ) + sin(180^circ - theta)/sintheta` = sec220°
Prove the following:
`(2cos 4x + 1)/(2cosx + 1)` = (2 cos x – 1) (2 cos 2x – 1)
Prove the following:
cos2x + cos2(x + 120°) + cos2(x – 120°) = `3/2`
Prove the following:
2cosec 2x + cosec x = `secx cot(x/2)`
Prove the following:
`4 cos x. cos(x + pi/3) . cos (x - pi/3)` = cos 3x
Prove the following:
`sinx tan(x/2) + 2cosx = 2/(1 + tan^2(x/2))`
Select the correct option from the given alternatives :
The value of cos A cos (60° – A) cos (60° + A) is equal to ......
Prove the following:
`cos(pi/4 + x) + cos(pi/4 - x) = sqrt(2)cosx`
Prove the following:
`(sin5x - 2sin3x + sinx)/(cos5x - cosx)` = tanx
Prove the following:
cos22x − cos26x = sin4x sin8x
If `x + 1/x` = 2 cos θ, then `x^n + 1/x^n` is equal to ______.
`(1 - tan^2(45^circ - A))/(1 + tan^2(45^circ - A))` is equal to ______.
If sin 4A – cos 2A = cos 4A – sin 2A `("where", 0 < A < π/4)`, then the value of tan 4A is ______.
The value of `(cos^3θ - cos 3θ)/cosθ + (sin^3θ + sin 3θ)/sinθ` is ______.
cot x . cot 2x – cot 2x . cot 3x – cot 3x . cot x is equal to ______.
`(sin(90^circ - θ) sin θ)/tanθ + sin^2 θ` is equal to ______.
If θ is acute and `(cos^2θ)/(cot^2 θ - cos^2 θ)` = 3, then θ is equal to ______.
The value of `(1 + cos π/6)(1 + cos π/3)(1 + cos (2π)/3)(1 + cos (7π)/6)` is equal to ______.
If x sin θ = y cos θ = `(2z tan θ)/(1 - tan^2 θ)`, then 4z2(x2 + y2) is equal to ______.
If sin θ = `12/13, (0 < θ < π/2)` and cos `phi = - 3/5, (π < phi < (3π)/2)`. Then, sin(θ + `phi`) will be ______.
If `(2 sin α)/({1 + cos α + sin α})` = y, then `({1 - cos α + sin α})/(1 + sin α)` = ______.
`(sin 3θ - cos 3θ)/(sin θ + cos θ) + 1` = ______.
(sec 2A + 1) sec2 A = ______.
The value of sin 3A sin3 A + cos 3A cos3 A is ______.
The expression `2 cos π/13. cos (9π)/13 + cos (3π)/13 + cos (5π)/13` is equal to ______.