Advertisements
Advertisements
प्रश्न
Prove the following:
`4 cos x. cos(x + pi/3) . cos (x - pi/3)` = cos 3x
उत्तर
`4 cos x. cos(x + pi/3). cos (x - pi/3)`
Cosine Addition Formula: cos (a+b) = cosa cosb − sina sinb
Cosine Subtraction Formula: cos (a−b) = cosa cosb + sina sinb
Here, a = x and b = `pi/3`
L.H.S. = `4 cos x. cos(x + pi/3). cos (x - pi/3)`
= `4 cosx. (cos x cos pi/3 - sin x sin pi/3) (cosx cos pi/3 + sinx sin pi/3)`
= `4 cosx (cosx 1/2 - sinx sqrt3/2) (cosx 1/2 + sinx sqrt3/2)` ...`[∵ sin pi/3 = sqrt3/2, cos pi/3 = 1/2]`
= `4 cos (1/2 cosx - sqrt3/2 sinx) (1/2 cosx + sqrt3/2 sinx)`
= `4 cosx[(1/2 cosx)^2 - (sqrt3/2 sin x)^2]`
= `4 cosx (1/4cos^2x - 3/4 sin^2)`
= `4/4(cos^3x - 3 sin^2.cosx)`
= `cos^3x - 3 cosx.sin^2x`
= cos3x - 3 cosx (1 - cos2x)
= cos3x - 3 cosx + 3 cos3x
= 4 cos3x - 3 cosx
= cos 3x
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following:
tan10° + tan35° + tan10°.tan35° = 1
Prove the following:
`(cot"A"cot4"A" + 1)/(cot"A" cot4"A" - 1) = (cos3"A")/(cos5"A")`
Prove the following:
(cos x – cos y)2 + (sin x – sin y)2 = `4sin^2 ((x - y))/2`
Prove the following:
tan x + cot x = 2 cosec 2x
Prove the following:
`(tan(theta/2) + cot(theta/2))/(cot(theta/2) - tan(theta/2))` = secθ
Prove the following:
`1/(tan3"A" - tan"A") - 1/(cot3"A" - cot"A")` = cot2A
Prove the following:
cos7° cos 14° cos28° cos 56° = `sin68^circ/(16cos83^circ)`
Prove the following:
`(2cos 4x + 1)/(2cosx + 1)` = (2 cos x – 1) (2 cos 2x – 1)
Prove the following:
2cosec 2x + cosec x = `secx cot(x/2)`
Prove the following:
`sinx tan(x/2) + 2cosx = 2/(1 + tan^2(x/2))`
Select the correct option from the given alternatives :
The value of cos A cos (60° – A) cos (60° + A) is equal to ......
Prove the following:
`cos(pi/4 + x) + cos(pi/4 - x) = sqrt(2)cosx`
Prove the following:
sin26x − sin24x = sin2x sin10x
Prove the following:
cos22x − cos26x = sin4x sin8x
Prove the following:
`sqrt(3) "cosec"20^circ - sec20^circ` = 4
`sqrt(3) "cosec" 20^circ - sec 20^circ` is equal to ______.
If `x + 1/x` = 2 cos θ, then `x^n + 1/x^n` is equal to ______.
If `sqrt((1 + cos A)/(1 - cos A)) = x/y`, then the value of tan A is ______.
If tan A and tan B are the roots of x2 – ax + b = 0, then the value of sin2(A + B) is ______.
If sin 4A – cos 2A = cos 4A – sin 2A `("where", 0 < A < π/4)`, then the value of tan 4A is ______.
`(sin(90^circ - θ) sin θ)/tanθ + sin^2 θ` is equal to ______.
If sin θ = `1/2` and θ is acute, then (3 cos θ – 4 cos3 θ) is equal to ______.
If θ is acute and `(cos^2θ)/(cot^2 θ - cos^2 θ)` = 3, then θ is equal to ______.
The value of `(1 + cos π/6)(1 + cos π/3)(1 + cos (2π)/3)(1 + cos (7π)/6)` is equal to ______.
`(sin θ + sin 2θ)/(1 + cos θ + cos 2θ)` = ______.
If tan α = `1/7`, tan β = `1/3`, then cos 2α = ______.
If tan β = cos θ tan α, then `tan^2 θ/2` = ______.
2 sin A cos3 A – 2 sin3 A cos A = ______.
The value of cos 6x is equal to ______.
The value of sin 3A sin3 A + cos 3A cos3 A is ______.
The expression `2 cos π/13. cos (9π)/13 + cos (3π)/13 + cos (5π)/13` is equal to ______.