Advertisements
Advertisements
प्रश्न
Prove the following:
tan10° + tan35° + tan10°.tan35° = 1
उत्तर
Since 45° = 10° + 35°,
tan 45° = tan (10° + 35°)
∴ 1 =
∴ 1 – tan10° tan35° = tan10° + tan35°
∴ tan10° + tan35° + tan10° tan35° = 1
APPEARS IN
संबंधित प्रश्न
Prove the following:
Prove the following:
(cos x + cos y)2 + (sin x – sin y)2 =
Prove the following:
16 sin θ cos θ cos 2θ cos 4θ cos 8θ = sin 16θ
Prove the following:
Prove the following:
Prove the following:
Prove the following:
cos7° cos 14° cos28° cos 56° =
Prove the following:
Prove the following:
cos2x + cos2(x + 120°) + cos2(x – 120°) =
Prove the following:
Prove the following:
Select the correct option from the given alternatives :
If α + β + γ = π then the value of sin2α + sin2β – sin2γ is equal to …......
Prove the following:
Prove the following:
Prove the following:
cot4x (sin5x + sin3x) = cotx (sin5x − sin3x)
Prove the following:
cos4 θ – sin4 θ is equal to ______.
If
If sin 4A – cos 2A = cos 4A – sin 2A
For any angle θ, the expression
If θ is acute and
The value of
If sin θ =
If tan α =
If tan β = cos θ tan α, then
(sec 2A + 1) sec2 A = ______.
The value of
The value of cos 6x is equal to ______.
The value of sin 3A sin3 A + cos 3A cos3 A is ______.
The expression