Advertisements
Advertisements
प्रश्न
Prove the following:
`(sin5x - 2sin3x + sinx)/(cos5x - cosx)` = tanx
उत्तर
L.H.S. = `(sin5x - 2sin3x + sinx)/(cos5x - cosx)`
= `((sin5x + sinx) - 2sin3x)/(cos5x - cosx)`
= `(2sin((5x + x)/2)*cos((5x - x)/2)-2sin3x)/(-2sin((5x + x)/2)*sin((5x - x)/2)`
= `(2sin3x*cos2x - 2sin3x)/(-2sin3x*sin2x)`
= `(2sin3x(cos2x - 1))/(-2sin3x*sin2x)`
= `(1 - cos2x)/(sin2x)`
= `(2sin^2x)/(2sinx cosx)`
= `sinx/cosx`
= tanx
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following:
`(cos27^circ + sin27^circ)/(cos27^circ - sin27^circ)` = tan72°
Prove the following:
tan10° + tan35° + tan10°.tan35° = 1
Prove the following:
(sin 3x + sin x)sin x + (cos 3x – cos x) cos x = 0
Prove the following:
(cos x – cos y)2 + (sin x – sin y)2 = `4sin^2 ((x - y))/2`
Prove the following:
tan x + cot x = 2 cosec 2x
Prove the following:
16 sin θ cos θ cos 2θ cos 4θ cos 8θ = sin 16θ
Prove the following:
`1/(tan3"A" - tan"A") - 1/(cot3"A" - cot"A")` = cot2A
Prove the following:
`(sin^2(-160^circ))/(sin^(2)70^circ) + sin(180^circ - theta)/sintheta` = sec220°
Prove the following:
`(2cos 4x + 1)/(2cosx + 1)` = (2 cos x – 1) (2 cos 2x – 1)
Prove the following:
2cosec 2x + cosec x = `secx cot(x/2)`
Select the correct option from the given alternatives :
If α + β + γ = π then the value of sin2α + sin2β – sin2γ is equal to …......
Prove the following:
`cos(pi/4 + x) + cos(pi/4 - x) = sqrt(2)cosx`
Prove the following:
sin26x − sin24x = sin2x sin10x
Prove the following:
cos22x − cos26x = sin4x sin8x
Prove the following:
`sqrt(3) "cosec"20^circ - sec20^circ` = 4
Let α and β be such that π < α – β < 3π. If sin α + sin β = `- 21/65` and cos α + cos β = `-27/65`, then the value of `cos ((α - β))/2` is ______.
If `x + 1/x` = 2 cos θ, then `x^n + 1/x^n` is equal to ______.
If cos 2α = `(3 cos 2β - 1)/(3 - cos 2β)`, then tan α is equal to ______.
If tan A and tan B are the roots of x2 – ax + b = 0, then the value of sin2(A + B) is ______.
The value of `(cos^3θ - cos 3θ)/cosθ + (sin^3θ + sin 3θ)/sinθ` is ______.
`(sin(90^circ - θ) sin θ)/tanθ + sin^2 θ` is equal to ______.
If θ is acute and `(cos^2θ)/(cot^2 θ - cos^2 θ)` = 3, then θ is equal to ______.
The value of `(1 + cos π/6)(1 + cos π/3)(1 + cos (2π)/3)(1 + cos (7π)/6)` is equal to ______.
`(sin 3θ - cos 3θ)/(sin θ + cos θ) + 1` = ______.
If tan α = `1/7`, tan β = `1/3`, then cos 2α = ______.
(sec 2A + 1) sec2 A = ______.
The expression `2 cos π/13. cos (9π)/13 + cos (3π)/13 + cos (5π)/13` is equal to ______.