Advertisements
Advertisements
प्रश्न
Prove the following:
`(2cos 4x + 1)/(2cosx + 1)` = (2 cos x – 1) (2 cos 2x – 1)
उत्तर
L.H.S. = `(2cos 4x + 1)/(2cosx + 1)`
= `(2[2cos^2(2x) - 1] + 1)/(2cos x + 1)` ...[∵ cos 2θ = 2 cos2 θ – 1]
= `(4cos^2 2x - 2 + 1)/(2cos x + 1)`
= `((2cos 2x)^2 - (1)^2)/(2cos x + 1)`
= `((2cos 2x + 1)(2cos 2x - 1))/(2cos x + 1)`
= `([2(2cos^2 x - 1) + 1](2cos 2x - 1))/(2cosx + 1)`
= `((4cos^2 x - 2 + 1)(2cos 2x - 1))/(2cos x + 1)`
= `([(2cos x)^2 - (1)^2](2cos 2x - 1))/(2cos x + 1)`
= `((2cos x + 1)(2cos x - 1)(2cos 2x - 1))/(2cos x + 1)`
= (2 cos x – 1) (2 cos 2x – 1)
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following:
`(cos27^circ + sin27^circ)/(cos27^circ - sin27^circ)` = tan72°
Prove the following:
`(cot"A"cot4"A" + 1)/(cot"A" cot4"A" - 1) = (cos3"A")/(cos5"A")`
Prove the following:
(sin 3x + sin x)sin x + (cos 3x – cos x) cos x = 0
Prove the following:
(cos x + cos y)2 + (sin x – sin y)2 = `4cos^2 ((x + y))/2`
Prove the following:
(cos x – cos y)2 + (sin x – sin y)2 = `4sin^2 ((x - y))/2`
Prove the following:
tan x + cot x = 2 cosec 2x
Prove the following:
`cosx/(1 + sinx) = (cot(x/2) - 1)/(cot(x/2) + 1)`
Prove the following:
`1/(tan3"A" - tan"A") - 1/(cot3"A" - cot"A")` = cot2A
Prove the following:
cos7° cos 14° cos28° cos 56° = `sin68^circ/(16cos83^circ)`
Prove the following:
`(sin^2(-160^circ))/(sin^(2)70^circ) + sin(180^circ - theta)/sintheta` = sec220°
Prove the following:
cos2x + cos2(x + 120°) + cos2(x – 120°) = `3/2`
Prove the following:
2cosec 2x + cosec x = `secx cot(x/2)`
Prove the following:
`4 cos x. cos(x + pi/3) . cos (x - pi/3)` = cos 3x
Prove the following:
`sinx tan(x/2) + 2cosx = 2/(1 + tan^2(x/2))`
Select the correct option from the given alternatives :
If α + β + γ = π then the value of sin2α + sin2β – sin2γ is equal to …......
Prove the following:
`cos(pi/4 + x) + cos(pi/4 - x) = sqrt(2)cosx`
Prove the following:
cot4x (sin5x + sin3x) = cotx (sin5x − sin3x)
Prove the following:
`sqrt(3) "cosec"20^circ - sec20^circ` = 4
For any angle θ, the expression `(2 cos 8θ + 1)/(2 cos θ + 1)` is equal to ______.
The value of `(cos^3θ - cos 3θ)/cosθ + (sin^3θ + sin 3θ)/sinθ` is ______.
If tan x = sin 45° cos 45° + sin 30°, then x is equal to ______.
`(sin(90^circ - θ) sin θ)/tanθ + sin^2 θ` is equal to ______.
If sin θ = `1/2` and θ is acute, then (3 cos θ – 4 cos3 θ) is equal to ______.
If θ is acute and `(cos^2θ)/(cot^2 θ - cos^2 θ)` = 3, then θ is equal to ______.
The value of `(1 + cos π/6)(1 + cos π/3)(1 + cos (2π)/3)(1 + cos (7π)/6)` is equal to ______.
If `tan x + tan(π/3 - x) tan ((2π)/3 + x)` = 3, then ______.
`(sin θ + sin 2θ)/(1 + cos θ + cos 2θ)` = ______.
`(sin 3θ - cos 3θ)/(sin θ + cos θ) + 1` = ______.
If tan α = `1/7`, tan β = `1/3`, then cos 2α = ______.
(sec 2A + 1) sec2 A = ______.
2 sin A cos3 A – 2 sin3 A cos A = ______.
The value of `sin π/10` is ______.
The value of cos 6x is equal to ______.
The expression `2 cos π/13. cos (9π)/13 + cos (3π)/13 + cos (5π)/13` is equal to ______.