Advertisements
Advertisements
प्रश्न
Prove the following:
tan10° + tan35° + tan10°.tan35° = 1
उत्तर
Since 45° = 10° + 35°,
tan 45° = tan (10° + 35°)
∴ 1 = `(tan10^circ + tan35^circ)/(1 - tan10^circ tan35^circ)`
∴ 1 – tan10° tan35° = tan10° + tan35°
∴ tan10° + tan35° + tan10° tan35° = 1
APPEARS IN
संबंधित प्रश्न
Prove the following:
`(cot"A"cot4"A" + 1)/(cot"A" cot4"A" - 1) = (cos3"A")/(cos5"A")`
Prove the following:
(sin 3x + sin x)sin x + (cos 3x – cos x) cos x = 0
Prove the following:
tan x + cot x = 2 cosec 2x
Prove the following:
16 sin θ cos θ cos 2θ cos 4θ cos 8θ = sin 16θ
Prove the following:
`cosx/(1 + sinx) = (cot(x/2) - 1)/(cot(x/2) + 1)`
Prove the following:
`(2cos 4x + 1)/(2cosx + 1)` = (2 cos x – 1) (2 cos 2x – 1)
Select the correct option from the given alternatives :
The value of `sin pi/14sin (3pi)/14sin (5pi)/14sin (7pi)/14sin (9pi)/14sin (11pi)/14sin (13pi)/14` is ....
Prove the following:
`(sin5x - 2sin3x + sinx)/(cos5x - cosx)` = tanx
Prove the following:
sin26x − sin24x = sin2x sin10x
Prove the following:
cos22x − cos26x = sin4x sin8x
Prove the following:
`sqrt(3) "cosec"20^circ - sec20^circ` = 4
cos4 θ – sin4 θ is equal to ______.
Let α and β be such that π < α – β < 3π. If sin α + sin β = `- 21/65` and cos α + cos β = `-27/65`, then the value of `cos ((α - β))/2` is ______.
If `x + 1/x` = 2 cos θ, then `x^n + 1/x^n` is equal to ______.
`(1 - tan^2(45^circ - A))/(1 + tan^2(45^circ - A))` is equal to ______.
If `sqrt((1 + cos A)/(1 - cos A)) = x/y`, then the value of tan A is ______.
If cos 2α = `(3 cos 2β - 1)/(3 - cos 2β)`, then tan α is equal to ______.
If tan A and tan B are the roots of x2 – ax + b = 0, then the value of sin2(A + B) is ______.
If sin 4A – cos 2A = cos 4A – sin 2A `("where", 0 < A < π/4)`, then the value of tan 4A is ______.
For any angle θ, the expression `(2 cos 8θ + 1)/(2 cos θ + 1)` is equal to ______.
The value of `(cos^3θ - cos 3θ)/cosθ + (sin^3θ + sin 3θ)/sinθ` is ______.
If tan x = sin 45° cos 45° + sin 30°, then x is equal to ______.
If `tan x + tan(π/3 - x) tan ((2π)/3 + x)` = 3, then ______.
If sin θ = `12/13, (0 < θ < π/2)` and cos `phi = - 3/5, (π < phi < (3π)/2)`. Then, sin(θ + `phi`) will be ______.
If `(2 sin α)/({1 + cos α + sin α})` = y, then `({1 - cos α + sin α})/(1 + sin α)` = ______.
`(sin θ + sin 2θ)/(1 + cos θ + cos 2θ)` = ______.
If tan α = `1/7`, tan β = `1/3`, then cos 2α = ______.
If tan β = cos θ tan α, then `tan^2 θ/2` = ______.
The value of `sin π/10` is ______.