Advertisements
Advertisements
प्रश्न
Prove the following:
`4 cos x. cos(x + pi/3) . cos (x - pi/3)` = cos 3x
उत्तर
`4 cos x. cos(x + pi/3). cos (x - pi/3)`
Cosine Addition Formula: cos (a+b) = cosa cosb − sina sinb
Cosine Subtraction Formula: cos (a−b) = cosa cosb + sina sinb
Here, a = x and b = `pi/3`
L.H.S. = `4 cos x. cos(x + pi/3). cos (x - pi/3)`
= `4 cosx. (cos x cos pi/3 - sin x sin pi/3) (cosx cos pi/3 + sinx sin pi/3)`
= `4 cosx (cosx 1/2 - sinx sqrt3/2) (cosx 1/2 + sinx sqrt3/2)` ...`[∵ sin pi/3 = sqrt3/2, cos pi/3 = 1/2]`
= `4 cos (1/2 cosx - sqrt3/2 sinx) (1/2 cosx + sqrt3/2 sinx)`
= `4 cosx[(1/2 cosx)^2 - (sqrt3/2 sin x)^2]`
= `4 cosx (1/4cos^2x - 3/4 sin^2)`
= `4/4(cos^3x - 3 sin^2.cosx)`
= `cos^3x - 3 cosx.sin^2x`
= cos3x - 3 cosx (1 - cos2x)
= cos3x - 3 cosx + 3 cos3x
= 4 cos3x - 3 cosx
= cos 3x
= R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following:
`(cos27^circ + sin27^circ)/(cos27^circ - sin27^circ)` = tan72°
Prove the following:
(cos x + cos y)2 + (sin x – sin y)2 = `4cos^2 ((x + y))/2`
Prove the following:
(cos x – cos y)2 + (sin x – sin y)2 = `4sin^2 ((x - y))/2`
Prove the following:
16 sin θ cos θ cos 2θ cos 4θ cos 8θ = sin 16θ
Prove the following:
`cosx/(1 + sinx) = (cot(x/2) - 1)/(cot(x/2) + 1)`
Prove the following:
`(sin^2(-160^circ))/(sin^(2)70^circ) + sin(180^circ - theta)/sintheta` = sec220°
Select the correct option from the given alternatives :
The value of cos A cos (60° – A) cos (60° + A) is equal to ......
Select the correct option from the given alternatives :
The value of `sin pi/14sin (3pi)/14sin (5pi)/14sin (7pi)/14sin (9pi)/14sin (11pi)/14sin (13pi)/14` is ....
Select the correct option from the given alternatives :
If α + β + γ = π then the value of sin2α + sin2β – sin2γ is equal to …......
Prove the following:
cos22x − cos26x = sin4x sin8x
Prove the following:
cot4x (sin5x + sin3x) = cotx (sin5x − sin3x)
cos4 θ – sin4 θ is equal to ______.
`(1 - tan^2(45^circ - A))/(1 + tan^2(45^circ - A))` is equal to ______.
If `sqrt((1 + cos A)/(1 - cos A)) = x/y`, then the value of tan A is ______.
If tan A and tan B are the roots of x2 – ax + b = 0, then the value of sin2(A + B) is ______.
For any angle θ, the expression `(2 cos 8θ + 1)/(2 cos θ + 1)` is equal to ______.
The value of `(cos^3θ - cos 3θ)/cosθ + (sin^3θ + sin 3θ)/sinθ` is ______.
cot x . cot 2x – cot 2x . cot 3x – cot 3x . cot x is equal to ______.
If tan x = sin 45° cos 45° + sin 30°, then x is equal to ______.
`(sin(90^circ - θ) sin θ)/tanθ + sin^2 θ` is equal to ______.
If sin θ = `1/2` and θ is acute, then (3 cos θ – 4 cos3 θ) is equal to ______.
If θ is acute and `(cos^2θ)/(cot^2 θ - cos^2 θ)` = 3, then θ is equal to ______.
If `tan x + tan(π/3 - x) tan ((2π)/3 + x)` = 3, then ______.
If sin θ = `12/13, (0 < θ < π/2)` and cos `phi = - 3/5, (π < phi < (3π)/2)`. Then, sin(θ + `phi`) will be ______.
If `(2 sin α)/({1 + cos α + sin α})` = y, then `({1 - cos α + sin α})/(1 + sin α)` = ______.
`(sin 3θ - cos 3θ)/(sin θ + cos θ) + 1` = ______.
The value of cos 6x is equal to ______.
The value of sin 3A sin3 A + cos 3A cos3 A is ______.