Advertisements
Advertisements
प्रश्न
Select the correct option from the given alternatives :
The value of `sin pi/14sin (3pi)/14sin (5pi)/14sin (7pi)/14sin (9pi)/14sin (11pi)/14sin (13pi)/14` is ....
विकल्प
`1/16`
`1/64`
`1/128`
`1/256`
उत्तर
`1/64`
Explanation:
`sin pi/14sin (3pi)/14sin (5pi)/14sin (7pi)/14sin (9pi)/14sin (11pi)/14sin (13pi)/14`
= `sin pi/14sin (3pi)/14sin (5pi)/14 xx 1 xx sin(pi - (5pi)/14)sin(pi - (3pi)/14)sin(pi - pi/14) ...[because sin (7pi)/14 = sin pi/2 = 1]`
= `(sin pi/14sin (3pi)/14sin (5pi)/14)^2` ...[∵ sin(π – θ) = sin θ]
`sin pi/14sin (3pi)/14sin (5pi)/14`
= `sin(pi/2 - (3pi)/7)sin(pi/2 - (2pi)/7)sin(pi/2 - pi/7)`
= `cos (3pi)/7 cos (2pi)/7 cos pi/7`
= `1/(2sin(pi/7))[sin((2pi)/7)cos((2pi)/7)]cos (3pi)/7`
= `1/(4sin(pi/7))(sin (4pi)/7) cos(pi - (4pi)/7)`
= `- 1/(4sin(pi/7))(sin (4pi)/7 cos (4pi)/7)`
= `- 1/(8sin(pi/7)) sin((8pi)/7)`
= `-1/(8sin(pi/7)) (-sin(pi/7)) ...[sin((8pi)/7) = sin(pi + pi/7) = -sin(pi/7)]`
= `1/8`
∴ Required expression = `(1/8)^2 = 1/64`
APPEARS IN
संबंधित प्रश्न
Prove the following:
`(cos27^circ + sin27^circ)/(cos27^circ - sin27^circ)` = tan72°
Prove the following:
(sin 3x + sin x)sin x + (cos 3x – cos x) cos x = 0
Prove the following:
(cos x – cos y)2 + (sin x – sin y)2 = `4sin^2 ((x - y))/2`
Prove the following:
tan x + cot x = 2 cosec 2x
Prove the following:
`(tan(theta/2) + cot(theta/2))/(cot(theta/2) - tan(theta/2))` = secθ
Prove the following:
cos7° cos 14° cos28° cos 56° = `sin68^circ/(16cos83^circ)`
Prove the following:
`(2cos 4x + 1)/(2cosx + 1)` = (2 cos x – 1) (2 cos 2x – 1)
Prove the following:
`4 cos x. cos(x + pi/3) . cos (x - pi/3)` = cos 3x
Select the correct option from the given alternatives :
The value of cos A cos (60° – A) cos (60° + A) is equal to ......
Select the correct option from the given alternatives :
If α + β + γ = π then the value of sin2α + sin2β – sin2γ is equal to …......
Prove the following:
`(sin5x - 2sin3x + sinx)/(cos5x - cosx)` = tanx
Prove the following:
cot4x (sin5x + sin3x) = cotx (sin5x − sin3x)
Prove the following:
`sqrt(3) "cosec"20^circ - sec20^circ` = 4
Let α and β be such that π < α – β < 3π. If sin α + sin β = `- 21/65` and cos α + cos β = `-27/65`, then the value of `cos ((α - β))/2` is ______.
If `x + 1/x` = 2 cos θ, then `x^n + 1/x^n` is equal to ______.
`(1 - tan^2(45^circ - A))/(1 + tan^2(45^circ - A))` is equal to ______.
If `sqrt((1 + cos A)/(1 - cos A)) = x/y`, then the value of tan A is ______.
If cos 2α = `(3 cos 2β - 1)/(3 - cos 2β)`, then tan α is equal to ______.
For any angle θ, the expression `(2 cos 8θ + 1)/(2 cos θ + 1)` is equal to ______.
The value of `(cos^3θ - cos 3θ)/cosθ + (sin^3θ + sin 3θ)/sinθ` is ______.
cot x . cot 2x – cot 2x . cot 3x – cot 3x . cot x is equal to ______.
If tan x = sin 45° cos 45° + sin 30°, then x is equal to ______.
If sin θ = `1/2` and θ is acute, then (3 cos θ – 4 cos3 θ) is equal to ______.
If θ is acute and `(cos^2θ)/(cot^2 θ - cos^2 θ)` = 3, then θ is equal to ______.
If `tan x + tan(π/3 - x) tan ((2π)/3 + x)` = 3, then ______.
`(sin θ + sin 2θ)/(1 + cos θ + cos 2θ)` = ______.
`(sin 3θ - cos 3θ)/(sin θ + cos θ) + 1` = ______.
If tan α = `1/7`, tan β = `1/3`, then cos 2α = ______.
If tan β = cos θ tan α, then `tan^2 θ/2` = ______.
(sec 2A + 1) sec2 A = ______.
The value of `sin π/10` is ______.
The value of cos 6x is equal to ______.