Advertisements
Advertisements
प्रश्न
प्रत्येक संबंध जो सममित तथा संक्रामक है, स्वतुल्य भी है।
पर्याय
सत्य
असत्य
उत्तर
यह कथन असत्य है।
व्याख्या:
मान लीजिए R एक ऐसा संबंध है जो द्वारा परिभाषित है।
R = {(1, 2), (2, 1), (1, 1), (2, 2)} समुच्चय A पर = {1, 2, 3}
यह स्पष्ट है कि(3, 3) ∉ R
तो, यह स्वतुल्य नहीं है।
APPEARS IN
संबंधित प्रश्न
मान लीजिए कि A = {0, 1, 2, 3} तथा A में एक संबंध R निम्नलिखित प्रकार से परिभाषित कीजिए:
R = {(0, 0), (0, 1), (0, 3), (1, 0), (1, 1), (2, 2), (3, 0), (3, 3)}
क्या R स्वतुल्य, सममित, संक्रामक है?
सिद्ध कीजिए कि f(x) = `x/(x^2 + 1)`, ∀ ∈ + R, द्वारा परिभाषित फलन f : R → R न तो एकैकी है और न आच्छादी है।
मान लीजिए कि R वास्तविक संख्याओ का समुच्चय है तथा f : R → R एक फलन है, जो f (x) = 4x + 5 द्वारा परिभाषित है। सिद्ध कीजिए कि f व्युत्क्रमणीय है तथा f–1 ज्ञात कीजिए।
मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:
a, b ∈ Q के लिए a * b = `"ab"/4`
मान लीजिए कि Q में परिभाषित * एक द्वि- आधारी संक्रिया है। ज्ञात कीजिए कि निम्नलिखित में से कौन-सा द्विआधारी संक्रिया साहचर्य है:
a, b ∈ Q के लिए a * b = a – b + ab
मान लीजिए कि R प्राकृत संख्याओं के समुच्चय N में एक संबंध है, जो nRm यदि n विभाजित करता है m को, द्वारा परिभाषित है, तो R
मान लीजिए कि L किसी समतल में स्थित सभी सरल रेखाओं के समुच्चय को निरूपित करता है। मान लीजिए कि एक संबंध R, नियम lRm यदि और केवल यदि l लम्ब है m पर, ∀ l, m ∈ L, द्वारा परिभाषित है। तब R
मान लीजिए कि f : R → R, f (x) = x2 + 1 द्वारा परिभषित हैं, तो 17 तथा -3 के पूर्व प्रतिबिम्ब क्रमश:
f (x) = `sqrt(x^2 –3x +2)` द्वारा परिभषित फलन f : R → R का प्रांत ______ है।
अवयवों वाले समुच्चय A पर विचार कीजिए। A से स्वयं A पर एकैकी आच्छादक फलनों की कुल संख्या ______ है।
मान लीजिए कि A एक परिमित समुच्चय है, तो A से स्वयं A में प्रत्येक एकैक फलन आच्छादी नहीं है।
समुच्चय A, B तथा C के लिए, मान लीजिए कि f : A → B, g : B → C फलन इस प्रकार के हैं कि फलन g o f एकैक है तो f तथा g दोनों ही एकैक फलन हैं।
मान लीजिए कि A = {a, b, c} तथा A में परिभाषित संबंध R निम्नलिखित है:
R = {(a, a), (b, c), (a, b)}. तो उन क्रमित युग्मों की, कम से कम, संख्या लिखिए, जिनको R में जोड़ने से R स्वतुल्य तथा संक्रामक बन जाता है।
मान लीजिए कि X = {1, 2, 3} तथा Y = {4, 5}। ज्ञात कीजिए कि क्या X ×Y के निम्नलिखित उपसमुच्चय X से Y में फलन हैं या नहीं हैं।
h = {(1,4), (2, 5), (3, 5)}
यदि फलन f: A → B तथा g: B → A, g o f = IA को संतुष्ट करता हैं, तो सिद्ध कीजिए कि f एकैक है तथा g आच्छादक है।
यदि A = {1, 2, 3, 4}, तो A में निम्लिखित गुण वाले संबंध को परिभाषित कीजिए:
सममित हों परन्तु न तो स्वतुल्य हों और न संक्रामक हों।
एक ऐसे प्रतिचित्रण का उदाहरण दीजिए जो -
एकैकी है किंतु आच्छादक नहीं है।
मान लीजिए A = [-1, 1]। तो विचार कीजिए कि क्या A में परिभाषित निम्नलिखित फलन एकैकी, आच्छादक या एकैकी आच्छादी हैं:
h(x) = x|x|
निम्नलिखित में से N में एक संबंध परिभाषित करते है:
x बड़ा है y से, x, y ∈ N
निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।
निम्नलिखित में से N में एक संबंध परिभाषित करते है:
x + y = 10, x, y ∈ N
निर्धारित कीजिए कि उपर्युक्त संबंधो में से कौन-से संबंध स्वतुल्य, सममित तथा संक्रामक हैं।
फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो f o g ज्ञात कीजिए:
फलन f , g: R → R क्रमशः f(x) = x2 + 3x + 1 तथा g(x) = 2x - 3 द्वारा परिभाषित हैं, तो g o g ज्ञात कीजिए:
समुच्चय A = {1, 2, 3} में तुल्यता संबंधों की अधिकतम संख्या ______ है।
यदि समुच्चय A में 5 अवयव हैं तथा समुच्चय B में 6 अवयव हैं, तो A से B में एकैकी तथा आच्छादक प्रतिचित्रणों की संख्या ______ है।
मान लीजिए f: R → R, f(x) = `1/x` x ∈ R द्वारा परिभाषित है, तो f ______ है।
मान लीजिए f: A → B तथा g: B → C एकैकी आच्छादी फलन हैं, तो (g o f)-1 ______ है।
मान लीजिए f: R → R, f(x) = `{{:(2x",", x > 3),(x^2",", 1 < x ≤ 3),(3x",", x ≤ 1):}` द्वारा परिभाषित है, तो f (-1) + f (2) + f (4) ______ है।
मान लीजिए कि N में एक संबंध R, aRb यदि 2a + 3b = 30 द्वारा परिभाषित है, तो R = ______।