मराठी

रेखा x – 7y + 5 = 0 पर लंब और x-अंत: खंड 3 वाली रेखा का समीकरण ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

रेखा x – 7y + 5 = 0 पर लंब और x-अंत: खंड 3 वाली रेखा का समीकरण ज्ञात कीजिए।

बेरीज

उत्तर

∵ x-अंत: खंड = 3

∴ रेखा A(3, 0) से होकर जाती है।

रेखा PQ: x – 7y + 5 = 0

या 7y = x + 5

या y = `1/7 "x" + 5/7`

इसलिए PQ की ढाल = `1/7`

∵ PQ ⊥ AB

∴ A से होकर जाने वाली रेखा AB की ढाल = –7

∴ बिंदु (3, 0) से रेखा AB का समीकरण,

y – 0 = –7(x – 3)

= –7x + 21

या 7x + y – 21 = 0

दूसरी विधि: ax + by + c = 0 की लंब कोई रेखा bx – ay + k = 0

∴ x – 7y + 5 = 0 की लंब रेखा 7x + y + k = 0

यह रेखा (3, 0) से होकर जाती है।

∴ 7 x 3 + 0 + k = 0,

अर्थात् k = –21

∴ अभीष्ट रेखा का समीकरण 7x + y – 21 = 0

shaalaa.com
रेखा का व्यापक समीकरण
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: सरल रेखाएँ - प्रश्नावली 10.3 [पृष्ठ २४२]

APPEARS IN

एनसीईआरटी Mathematics [Hindi] Class 11
पाठ 10 सरल रेखाएँ
प्रश्नावली 10.3 | Q 8. | पृष्ठ २४२

संबंधित प्रश्‍न

रेखाओं `sqrt3"x" + "y" = 1` और `"x" + sqrt3"y" = 1` के बीच का कोण ज्ञात कीजिए।


बिंदुओं (h, 3) और (4, 1) से जाने वाली रेखा, रेखा 7x – 9y – 19 = 0 को समकोण पर प्रतिच्छेद करती है। h का मान ज्ञात कीजिए।


बिंदु (−1, 3) से रेखा 3x – 4y – 16 = 0 पर डाले गये लंबपाद के निर्देशांक ज्ञात कीजिए।


यदि p और q क्रमशः मूल बिंदु से रेखाओं x cos θ – y sin θ = k cos 2θ और x sec θ +y cosec θ = k पर लंब की लंबाइयाँ हैं तो सिद्ध कीजिए कि p2 + 4q2 = k2


शीर्षों A(2, 3), B(4, –1) और C(1, 2) वाले त्रिभुज ABC के शीर्ष A से उसकी संमुख भुजा पर लंब डाला गया है। लंब की लंबाई तथा समीकरण ज्ञात कीजिए।


यदि p मूल बिंदु से उस रेखा पर डाले लंब की लंबाई हो जिस पर अक्षों पर कटे अंत: खंड a और b हों, तो दिखाइए कि  `1/"p"^2 = 1/"a"^2 + 1/"b"^2`


उन रेखाओं के समीकरण ज्ञात कीजिए जिनके अक्षों से कटे अंतः खंडों का योग और गुणनफल क्रमशः 1 और –6 है।


यदि तीन रेखाएँ जिनके समीकरण y = m1x + c1, y = m2x + c2 और y = m3x + c3 हैं, संगामी हैं तो दिखाइए कि m1(c2 – c3) + m2(c3 – c1) + m3(c1 – c2) = 0


दर्शाइए कि मूल बिन्दु से जाने वाली और रेखा y = mx + c से θ कोण बनाने वाली उस रेखा का समीकरण `"y"/"x" = ±("m" + tan θ)/(1 - "m" tan θ)` हैं।


समकोण त्रिभुज के कर्ण के अंतय बिंदु (1, 3) और (−4, 1) हैं। त्रिभुज के पाद (legs) (समकोणीय भुजाओ) का एक समीकरण ज्ञात कीजिए जो कि दोनों अक्षरों के सामांतर हो।


समांतर रखाओं 9x + 6y – 7 = 0 और 3x + 2y + 6 = 0 से समदूरस्थ रेखा का समीकरण ज्ञात कीजिए।


दिखाइए कि `(sqrt("a"^2 - "b"^2), 0)` और `(-sqrt("a"^2 - "b"^2), 0)` बिंदुओं से रेखा `"x"/"a" cos θ + "y"/"b" sin θ = 1` पर खींचे गये लंबों की लंबाइयों का गुणनफल b2 है।


एक व्यक्ति समीकरणों 2x – 3y + 4= 0 और 3x + 4y – 5 = 0 से निरूपित सरल रेखीय पथों के संधि बिंदुओं (junction/crossing) पर खड़ा है और समीकरण 6x – 7y + 8 = 0 से निरूपित पथ पर न्यूनतम समय में पहुँचना चाहता है। उसके द्वारा अनुसरित पथ का समीकरण ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×