मराठी

सदिश i^+j^+k^ का, सदिशों 2i^+4j^-5k^ और λi^+2j^+3k^ के योगफल की दिशा में मात्रक सदिश के साथ अदिश गुणनफल 1 के बराबर है तो λ का मान ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

सदिश `hati + hatj + hatk` का, सदिशों `2hati + 4hatj - 5hatk` और `lambdahati + 2hatj + 3hatk` के योगफल की दिशा में मात्रक सदिश के साथ अदिश गुणनफल 1 के बराबर है तो λ का मान ज्ञात कीजिए।

बेरीज

उत्तर

`(2hati + 4hatj - 5hatk) + (lambdahati + 2hatj + 3hatk)` 

= `(2 + lambda)hati + 6hatj - 2hatk`

अतः `(2hati + 4hatj - 5hatk) + (lambdahati + 2hatj + 3hatk)` वाला इकाई सदिश दिया गया है।

`((2 + lambda)hati + 6hatj - 2hatk)/sqrt((2 + lambda)^2 + 6^2 + (-2)^2) `

`= ((2 + lambda)hati + 6hatj - 2hatk)/sqrt(4 + 4lambda + lambda^2 + 36 + 4)`

= `((2 + lambda)hati + 6hatj - 2hatk)/sqrt(lambda^2 + 4lambda + 44)`

इस इकाई सदिश के साथ `(hati + hatj + hatk)` का अदिश गुणनफल एक है।

⇒ `(hati + hatj + hatk) . ((2 + lambda)hati + 6hatj - 2hatk)/sqrt(lambda^2 + 4lambda + 44) = 1`

⇒ `((2 + lambda) + 6 - 2)/sqrt(lambda^2 + 4lambda + 44) = 1`

⇒ `sqrt(lambda^2 + 4lambda + 44) = lambda + 6`

⇒ `lambda^2 + 4lambda + 44 = (lambda + 6)^2`

⇒ `lambda^2 + 4lambda + 44 = lambda^2 + 12lambda + 36`

⇒ 8λ = 8

⇒ λ = 1

इसलिए λ का मान 1 है। 

shaalaa.com
दो सदिशों का गुणनफल - दो सदिशों का अदिश गुणनफल
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: सदिश बीजगणित - अध्याय 10 पर विविध प्रश्नावली [पृष्ठ ४७३]

APPEARS IN

एनसीईआरटी Mathematics - Part 1 and 2 [Hindi] Class 12
पाठ 10 सदिश बीजगणित
अध्याय 10 पर विविध प्रश्नावली | Q 13. | पृष्ठ ४७३

संबंधित प्रश्‍न

दो सदिशों `veca` तथा `vecb` के परिमाण क्रमशः `sqrt3` एवं 2 हैं और `veca . vecb = sqrt6` है तो `veca` तथा `vecb` के बीच का कोण ज्ञात कीजिए।


यदि `(veca + vecb).(veca - vecb) = 8` और `|veca| = 8|vecb|` हो तो `|veca|` एवं `|vecb|` ज्ञात कीजिए।


`(3veca - 5vecb) . (2veca + 7vecb)` का मान ज्ञात कीजिए।


दो सदिशों `veca` और `vecb` के परिमाण ज्ञात कीजिए, यदि इनके परिमाण समान है और इन के बीच का कोण 60° है तथा इनका अदिश गुणनफल `1/2` है।


यदि `veca = 2hati + 2hatj + 3hatk,  vecb = -hati +2hatj + hatk` और `vecc = 3hati + hatj` इस प्रकार है कि `veca + λvecb,  vecc` पर लंब है, तो λ का मान ज्ञात कीजिए।


दर्शाइए कि दो शून्येतर सदिशों `veca` और `vecb` के लिए `|veca| vecb + |vecb| veca, |veca| vecb - |vecb| veca` पर लंब है।


यदि `veca, vecb, vecc` मात्रक सदिश इस प्रकार है कि `veca + vecb + vecc = vec0` तो `veca . vecb + vecb . vecc + vecc . veca` का मान ज्ञात कीजिए।


यदि शून्येतर सदिश `veca` का परिणाम 'a' है और λ एक शून्येतर अदिश है तो `λveca` एक मात्रक सदिश है यदि ______.


मान लीजिए सदिश `veca, vecb, vecc` क्रमश: `a_1 hati + a_2hatj + a_3hatk, b_1hati + b_2hatj + b_3hatk, c_1hati + c_2hatj + c_3hatk` के रूप में दिए हुए हैं तब दर्शाइए की `veca xx (vecb + vecc) = veca xx vecb + veca xx vecc`


मान लीजिए `veca = hati + 4hatj + 2hatk, vecb = 3hati - 2hatj + 7hatk` और `vecc = 2hati - hatj + 4hatk`, एक ऐसा सदिश `vecd` ज्ञात कीजिए जो `veca` और `vecb` दोनों पर लांब है और `vecc.vecd = 15`.


यदि दो सदिशों `veca` और `vecb` के बीच का कोण θ है तो `|veca . vecb| = |veca xx vecb|` जब θ बराबर है:


`hati.(hatj xx hatk) + hatj.(hati xx hatk) + hatk.(hati xx hatj)` का मान है।


यदि दो सदिशों `veca` और `vecb` के बीच का कोण θ है तो `veca.vecb ≥ 0` होगा यदि ______:


सिद्ध कीजिए कि `(veca + vecb) . (veca + vecb) = |veca|^2 + |vecb|^2`, यदि और केवल यदि `veca,vecb` लंबवत् हैं। यह दिया हुआ है कि `veca ≠ vec0, vecb ≠ vec0.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×