मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

Seven Rods A, B, C, D, E, F and G Are Joined as Shown in Figure (28-e9). All the Rods Have Equal Cross-sectional Area a and Length L. the Thermal Conductivities of the Rods Are Ka = Kc = K0, Kb - Physics

Advertisements
Advertisements

प्रश्न

Seven rods A, B, C, D, E, F and G are joined as shown in the figure. All the rods have equal cross-sectional area A and length l. The thermal conductivities of the rods are KA = KC = K0, KB = KD = 2K0, KE = 3K0, KF = 4K0 and KG = 5K0. The rod E is kept at a constant temperature T1 and the rod G is kept at a constant temperature T2 (T2 > T1). (a) Show that the rod F has a uniform temperature T = (T1 + 2T2)/3. (b) Find the rate of heat flowing from the source which maintains the temperature T2.

बेरीज

उत्तर


Given:

KA = KC = K0

KB = KD = 2K0

KE = 3K0, KF = 4K0

K9= 5K0

Here, K denotes the thermal conductivity of the respective rods.

In steady state, temperature at the ends of rod F will be same.

Rate of flow of heat through rod A + rod C = Rate of flow of heat through rod B + rod D

`(K_A·A·(T-T_1))/ ( l ) + (K_c·A(T-T_1))/(l) +  (K_B·A( T_2 - T ))/l`

2k0 ( T - T) = 2 × 2 K0 ( T2 - T)

Temp of rod F = T =  `(T_1 + 2T_2)/3`

(b) To find the rate of flow of heat from the source (rod G), which maintains a temperature T2 is given by

Rate of flow of heat, q = `(DeltaT)/("Thermal resistance")`

First, we will find the effective thermal resistance of the circuit.

From the diagram, we can see that it forms a balanced Wheatstone bridge.

Also, as the ends of rod F are maintained at the same temperature, no heat current flows through rod F.

Hence, for simplification, we can remove this branch.

From the diagram, we find that Rand RB are connected in series.

∴ RAB = RA + RB

RC and Rare also connected in series.

∴ RCD = RC + RD

Then, RAB and RCD are in parallel connection.

`R_A  = l/(K_0A)`

`R_B = l/(2K_0A)`

`R_C = l /( K_0A)`

`R_D = l/(2K_0A)`

`R_{AB} = (3l)/(2k_0A)`

`R_{CD} = (3l)/(2K_0A)`

`R_"eff" = ((3l)/(2K_0A)xx(3l)/(2K_0A))/ (((3l)) /( 2K_0A) + (3l)/(2K_0A))`

`=(3l)/(4K_0A)`

`⇒ q = (DeltaT)/("R_eff")`

`= (T_1 - T_2)/((3l)/ (4K_0A))`

`⇒ (4K_0A(T_1 - T_2))/(3L)`

shaalaa.com
Thermal Expansion of Solids
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Heat Transfer - Exercises [पृष्ठ १००]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 6 Heat Transfer
Exercises | Q 32 | पृष्ठ १००

संबंधित प्रश्‍न

A brick weighing 4.0 kg is dropped into a 1.0 m deep river from a height of 2.0 m. Assuming that 80% of the gravitational potential energy is finally converted into thermal energy, find this thermal energy is calorie.


A van of mass 1500 kg travelling at a speed of 54 km h−1 is stopped in 10 s. Assuming that all the mechanical energy lost appears as thermal energy in the brake mechanism, find the average rate of production of thermal energy is cal s−1.


The thermal conductivity of a rod depends on


A liquid-nitrogen container is made of a 1 cm thick styrofoam sheet having thermal conductivity 0.025 J s−1 m−1 °C−1. Liquid nitrogen at 80 K is kept in it. A total area of 0.80 m2 is in contact with the liquid nitrogen. The atmospheric temperature us 300 K. Calculate the rate of heat flow from the atmosphere to the liquid nitrogen.


Water is boiled in a container having a bottom of surface area 25 cm2, thickness 1.0 mm and thermal conductivity 50 W m−1°C−1. 100 g of water is converted into steam per minute in the steady state after the boiling starts. Assuming that no heat is lost to the atmosphere, calculate the temperature of the lower surface of the bottom. Latent heat of vaporisation of water = 2.26 × 106 J kg−1.


A icebox almost completely filled with ice at 0°C is dipped into a large volume of water at 20°C. The box has walls of surface area 2400 cm2, thickness 2.0 mm and thermal conductivity 0.06 W m−1°C−1. Calculate the rate at which the ice melts in the box. Latent heat of fusion of ice = 3.4 × 105 J kg−1.


A pitcher with 1-mm thick porous walls contains 10 kg of water. Water comes to its outer surface and evaporates at the rate of 0.1 g s−1. The surface area of the pitcher (one side) = 200 cm2. The room temperature = 42°C, latent heat of vaporization = 2.27 × 10J kg−1, and the thermal conductivity of the porous walls = 0.80 J s−1 m−1°C−1. Calculate the temperature of water in the pitcher when it attains a constant value.


The ends of a metre stick are maintained at 100°C and 0°C. One end of a rod is maintained at 25°C. Where should its other end be touched on the metre stick so that there is no heat current in the rod in steady state?


A metal rod of cross sectional area 1.0 cm2 is being heated at one end. At one time, the temperatures gradient is 5.0°C cm−1 at cross section A and is 2.5°C cm−1 at cross section B. Calculate the rate at which the temperature is increasing in the part AB of the rod. The heat capacity of the part AB = 0.40 J°C−1, thermal conductivity of the material of the rod = 200 W m−1°C−1. Neglect any loss of heat to the atmosphere


A hole of radius r1 is made centrally in a uniform circular disc of thickness d and radius r2. The inner surface (a cylinder a length d and radius r1) is maintained at a temperature θ1 and the outer surface (a cylinder of length d and radius r2) is maintained at a temperature θ2 (θ1 > θ2). The thermal  conductivity of the material of the disc is K. Calculate the heat flowing per unit time through the disc.


A composite slab is prepared by pasting two plates of thickness L1 and L2 and thermal conductivites K1 and K2. The slabs have equal cross-sectional area. Find the equivalent conductivity of the composite slab.


Figure (28-E2) shows a copper rod joined to a steel rod. The rods have equal length and equal cross sectional area. The free end of the copper rod is kept at 0°C and that of the steel rod is kept at 100°C. Find the temperature at the junction of the rods. Conductivity of copper = 390 W m−1°C−1 and that if steel = 46 W m−1°C−1.


Suppose the bent part of the frame of the previous problem has a thermal conductivity of 780 J s−1 m−1 °C−1 whereas it is 390 J s−1 m1°C−1 for the straight part. Calculate the ratio of the rate of heat flow through the bent part to the rate of heat flow through the straight part.


Find the rate of heat flow through a cross section of the rod shown in figure (28-E10) (θ2 > θ1). Thermal conductivity of the material of the rod is K.


A hollow metallic sphere of radius 20 cm surrounds a concentric metallic sphere of radius 5 cm. The space between the two spheres is filled with a nonmetallic material. The inner and outer spheres are maintained at 50°C and 10°C respectively and it is found that 100 J of heat passes from the inner sphere to the outer sphere per second. Find the thermal conductivity of the material between the spheres.


Two bodies of masses m1 and m2 and specific heat capacities s1 and s2 are connected by a rod of length l, cross-sectional area A, thermal conductivity K and negligible heat capacity. The whole system is thermally insulated. At time t = 0, the temperature of the first body is T1 and the temperature of the second body is T2 (T2 > T1). Find the temperature difference between the two bodies at time t.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×