मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Show that the line 3x – 4y + 10 = 0 is tangent till the hyperbola x2 – 4y2 = 20. Also find the point of contact - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Show that the line 3x – 4y + 10 = 0 is tangent till the hyperbola x2 – 4y2 = 20. Also find the point of contact

बेरीज

उत्तर

Given equation of the hyperbola is x2 – 4y2 = 20.

∴ `x^2/20 - y^2/5` = 1

Comparing this equation with `x^2/"a"^2 - y^2/"b"^2` = 1, we get,

a2 = 20 and b2 = 5

Given equation of line is 3x – 4y + 10 = 0

∴ y = `(3x)/4 + 5/2`

Comparing this equation with y = mx + c, we get

m = `3/4` and c = `5/2`

For the line y = mx + c to be a tangent to the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1, we must have 

c2 = a2m2 – b2

c2 = `(5/2)^2 = 25/4`

∴ a2m2 – b= `20(3/4)^2 - 5`

= `20(9/16) - 5`

= `45/4-5`

= `25/4`

= c2

∴ The given line is a tangent to the given hyperbola and point of contact

= `((-"a"^2"m")/"c", (-"b"^2)/"c")`

= `((-20(3/4))/((5/2)), (-5)/((5/2)))`

= (– 6, – 2)

shaalaa.com
Conic Sections - Hyperbola
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Conic Sections - Exercise 7.3 [पृष्ठ १७५]

APPEARS IN

संबंधित प्रश्‍न

Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`x^2/25 - y^2/16` = – 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

21x2 – 4y2 = 84


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`y^2/25 - x^2/9` = 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`y^2/25 - x^2/144` = 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`x^2/100 - y^2/25` = + 1


Find the equation of the hyperbola referred to its principal axes:

whose distance between foci is 10 and eccentricity `5/2`


Find the equation of the hyperbola referred to its principal axes:

which passes through the points (6, 9) and (3, 0)


Find the equation of the hyperbola referred to its principal axes:

whose vertices are (± 7, 0) and end points of conjugate axis are (0, ±3)


Find the equation of the hyperbola referred to its principal axes:

whose foci are at (±2, 0) and eccentricity `3/2`


Find the equation of the hyperbola referred to its principal axes:

whose length of transverse and conjugate axis are 6 and 9 respectively


Find the equation of the tangent to the hyperbola:

3x2 – y2 = 4 at the point `(2, 2sqrt(2))`


Find the equation of the tangent to the hyperbola:

`x^2/144 - y^2/25` = 1 at the point whose eccentric angle is `pi/3`


Find the equation of the tangent to the hyperbola:

`x^2/16 - y^2/9` = 1 at the point in a first quadratures whose ordinate is 3


Find the equation of the tangent to the hyperbola:

9x2 – 16y2 = 144 at the point L of latus rectum in the first quadrant


If the 3x – 4y = k touches the hyperbola `x^2/5 - (4y^2)/5` = 1 then find the value of k


Find the equations of the tangents to the hyperbola 5x2 – 4y2 = 20 which are parallel to the line 3x + 2y + 12 = 0


Select the correct option from the given alternatives

The eccentricity of rectangular hyperbola is


Answer the following:

For the hyperbola `x^2/100−y^2/25` = 1, prove that SA. S'A = 25, where S and S' are the foci and A is the vertex


Answer the following:

Find the equation of the hyperbola in the standard form if eccentricity is `3/2` and distance between foci is 12.


Answer the following:

Find the equation of the tangent to the hyperbola `x^2/25 − y^2/16` = 1 at P(30°)


If P(x1, y1) is a point on the hyperbola x2 - y2 = a2, then SP. S'P = ______.


The eccentricity of the hyperbola 25x2 - 9y2 = 225 is ______.


The asymptotes of the hyperbola xy = hx + ky are ______.


The foci of a hyperbola coincide with the foci of the ellipse `x^2/25 + y^2/9` = 1. Find the equation of the hyperbola, if its eccentricity is 2.


(x – 1)2 + (y – 2)2 = `(3(2x + 3y + 2)^2)/13`represents hyperbola whose eccentricity is ______.


The locus of the mid-point of the chords of the hyperbola `(x^2/a^2) - (y^2/b^2)` = 1 passing through a fixed point (α, β) is a hyperbola with centre at `(α/2, β/2)` It equation is ______.


The number of points from where a pair of perpendicular tangents can be drawn to the hyperbola, x2sec2α – y2cosec2α = 1, `α∈(0, π/4)` are ______.


If the radii of director circles of `x^2/a^2 + y^2/b^2` = 1 and `x^2/a^2 - y^2/b^2` = (a > b) are 2r and r respectively, then `e_2^2/e_1^2` is equal to ______.

(where e1, e2 are their eccentricities respectively)


Let the hyperbola H : `x^2/a^2 - y^2/b^2` = 1 pass `(2sqrt(2), -2sqrt(2))`. A parabola is drawn whose focus is same as the focus of H with positive abscissa and the directrix of the parabola passes through the other focus of H. If the length of the latus rectum of the parabola is e times the length of the latus rectum of H, where e is the eccentricity of H, then which of the following points lies on the parabola?


Let a > 0, b > 0. Let e and l respectively be the eccentricity and length of the latus rectum of the hyperbola `x^2/"a"^2 - "y"^2/"b"^2` = 1. Let e' and l' respectively the eccentricity and length of the latus rectum of its conjugate hyperbola. If e2 = `11/14"l'"` and (e')2 = `11/8"l"^'` then the value of 77a + 44b is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×