Advertisements
Advertisements
प्रश्न
Select the correct option from the given alternatives
The eccentricity of rectangular hyperbola is
पर्याय
`1/2`
`1/(2 1/2)`
`2 1/2`
`1/(3 1/2)`
उत्तर
The eccentricity of rectangular hyperbola is `2 1/2`
APPEARS IN
संबंधित प्रश्न
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
16x2 – 9y2 = 144
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
21x2 – 4y2 = 84
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
x2 – y2 = 16
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
x = 2 sec θ, y = `2sqrt(3) tan theta`
Find the equation of the hyperbola with centre at the origin, length of conjugate axis 10 and one of the foci (–7, 0).
Find the eccentricity of the hyperbola, which is conjugate to the hyperbola x2 – 3y2 = 3
Find the equation of the hyperbola referred to its principal axes:
whose distance between directrices is `8/3` and eccentricity is `3/2`
Find the equation of the hyperbola referred to its principal axes:
whose foci are at (±2, 0) and eccentricity `3/2`
Find the equation of the tangent to the hyperbola:
3x2 – y2 = 4 at the point `(2, 2sqrt(2))`
Find the equation of the tangent to the hyperbola:
`x^2/144 - y^2/25` = 1 at the point whose eccentric angle is `pi/3`
Find the equation of the tangent to the hyperbola:
`x^2/16 - y^2/9` = 1 at the point in a first quadratures whose ordinate is 3
Show that the line 3x – 4y + 10 = 0 is tangent till the hyperbola x2 – 4y2 = 20. Also find the point of contact
Find the equations of the tangents to the hyperbola `x^2/25 - y^2/9` = 1 making equal intercepts on the co-ordinate axes
Select the correct option from the given alternatives:
Eccentricity of the hyperbola 16x2 − 3y2 − 32x − 12y − 44 = 0 is
Select the correct option from the given alternatives:
The foci of hyperbola 4x2 − 9y2 − 36 = 0 are
Answer the following:
Find the equation of the hyperbola in the standard form if eccentricity is `3/2` and distance between foci is 12.
Answer the following:
Find the equation of the tangent to the hyperbola `x^2/25 − y^2/16` = 1 at P(30°)
Answer the following:
Show that the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24. Find the point of contact
Answer the following:
Find the equations of the tangents to the hyperbola 3x2 − y2 = 48 which are perpendicular to the line x + 2y − 7 = 0
Answer the following:
Two tangents to the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1 make angles θ1, θ2, with the transverse axis. Find the locus of their point of intersection if tan θ1 + tan θ2 = k
If P(x1, y1) is a point on the hyperbola x2 - y2 = a2, then SP. S'P = ______.
Let H: `x^2/a^2 - y^2/b^2` = 1, a > 0, b > 0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is `4(2sqrt(2) + sqrt(14))`. If the eccentricity H is `sqrt(11)/2`, then the value of a2 + 2b2 is equal to ______.
The locus of the midpoints of the chord of the circle, x2 + y2 = 25 which is tangent to the hyperbola, `x^2/9 - y^2/16` = 1 is ______.
A line parallel to the straight line 2x – y = 0 is tangent to the hyperbola `x^2/4 - y^2/2` = 1 at the point (x1, y1). Then `x_1^2 + 5y_1^2` is equal to ______.
The asymptotes of the hyperbola xy = hx + ky are ______.
The foci of a hyperbola coincide with the foci of the ellipse `x^2/25 + y^2/9` = 1. Find the equation of the hyperbola, if its eccentricity is 2.
(x – 1)2 + (y – 2)2 = `(3(2x + 3y + 2)^2)/13`represents hyperbola whose eccentricity is ______.
The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point of intersection of the lines `x - 3sqrt(5)y` = 0 and `sqrt(5)x - 2y` = 13 and the length of its latus rectum is `4/3` units. The coordinates of its focus are ______.
The locus of the mid-point of the chords of the hyperbola `(x^2/a^2) - (y^2/b^2)` = 1 passing through a fixed point (α, β) is a hyperbola with centre at `(α/2, β/2)` It equation is ______.
If the radii of director circles of `x^2/a^2 + y^2/b^2` = 1 and `x^2/a^2 - y^2/b^2` = (a > b) are 2r and r respectively, then `e_2^2/e_1^2` is equal to ______.
(where e1, e2 are their eccentricities respectively)
Let a > 0, b > 0. Let e and l respectively be the eccentricity and length of the latus rectum of the hyperbola `x^2/"a"^2 - "y"^2/"b"^2` = 1. Let e' and l' respectively the eccentricity and length of the latus rectum of its conjugate hyperbola. If e2 = `11/14"l'"` and (e')2 = `11/8"l"^'` then the value of 77a + 44b is equal to ______.
Let e1 and e2 be the eccentricities of the ellipse, `x^2/25 + y^2/b^2` = 1 (b < 5) and the hyperbola, `x^2/16 - y^2/b^2` = 1 respectively satisfying e1e2 = 1. If α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair (α, β) is equal to ______.
For the Hyperbola `x^2/(cos^2α) - y^2/(sin^2α)` = 1, which of the following remains constant when α varies = ?
The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point `(3sqrt(5), 1)` and the length of its latus rectum is `4/3` units. The length of the conjugate axis is ______.
The eccentricity of the hyperbola x2 – 3y2 = 2x + 8 is ______.