मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola: x2 – y2 = 16 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

x2 – y2 = 16

बेरीज

उत्तर

Given equation of the hyperbola is x2 – y2 = 16

∴ `x^2/16 - y^2/16` = 1

Comparing this equation with `x^2/"a"^2 - y^2/"b"^2` = 1, we get

a2 = 16 and b2 = 16

∴ a = 4 and b = 4

Length of transverse axis = 2a = 2(4) = 8

Length of conjugate axis = 2b = 2(4) = 8

We know that

e =`sqrt("a"^2 + "b"^2)/"a"`

= `sqrt(16 + 16)/4`

= `sqrt(32)/4`

= `(4sqrt(2))/4`

= `sqrt(2)`

Co-ordinates of foci are S(ae, 0) and S'(– ae, 0),

i.e., `"S"(4sqrt(2), 0)` and `"S""'"(-4 sqrt(2), 0)`

Equations of the directrices are x = `± "a"/"e"`.

∴ x = `± 4/sqrt(2)`

∴ x = `±2sqrt(2)`

Length of latus rectum = `(2"b"^2)/"a"`

= `(2(16))/4`

= 8.

shaalaa.com
Conic Sections - Hyperbola
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Conic Sections - Exercise 7.3 [पृष्ठ १७४]

APPEARS IN

संबंधित प्रश्‍न

Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

21x2 – 4y2 = 84


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`y^2/25 - x^2/9` = 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`y^2/25 - x^2/144` = 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`x^2/100 - y^2/25` = + 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

x = 2 sec θ, y = `2sqrt(3) tan theta`


Find the equation of the hyperbola with centre at the origin, length of conjugate axis 10 and one of the foci (–7, 0).


Find the eccentricity of the hyperbola, which is conjugate to the hyperbola x2 – 3y2 = 3


If e and e' are the eccentricities of a hyperbola and its conjugate hyperbola respectively, prove that `1/"e"^2 + 1/("e""'")^2` = 1


Find the equation of the hyperbola referred to its principal axes:

whose distance between directrices is `8/3` and eccentricity is `3/2`


Find the equation of the hyperbola referred to its principal axes:

whose length of conjugate axis = 12 and passing through (1, – 2)


Find the equation of the hyperbola referred to its principal axes:

which passes through the points (6, 9) and (3, 0)


Find the equation of the tangent to the hyperbola:

3x2 – 4y2 = 12 at the point (4, 3)


Find the equation of the tangent to the hyperbola:

`x^2/144 - y^2/25` = 1 at the point whose eccentric angle is `pi/3`


Find the equation of the tangent to the hyperbola:

`x^2/16 - y^2/9` = 1 at the point in a first quadratures whose ordinate is 3


Show that the line 3x – 4y + 10 = 0 is tangent till the hyperbola x2 – 4y2 = 20. Also find the point of contact


Find the equations of the tangents to the hyperbola `x^2/25 - y^2/9` = 1 making equal intercepts on the co-ordinate axes


Select the correct option from the given alternatives:

If the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24, the point of contact is


Answer the following:

For the hyperbola `x^2/100−y^2/25` = 1, prove that SA. S'A = 25, where S and S' are the foci and A is the vertex


Answer the following:

Find the equation of the hyperbola in the standard form if Length of conjugate axis is 5 and distance between foci is 13.


Answer the following:

Find the equations of the tangents to the hyperbola 3x2 − y2 = 48 which are perpendicular to the line x + 2y − 7 = 0


Answer the following:

Two tangents to the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1 make angles θ1, θ2, with the transverse axis. Find the locus of their point of intersection if tan θ1 + tan θ2 = k


If P(x1, y1) is a point on the hyperbola x2 - y2 = a2, then SP. S'P = ______.


Let H: `x^2/a^2 - y^2/b^2` = 1, a > 0, b > 0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is `4(2sqrt(2) + sqrt(14))`. If the eccentricity H is `sqrt(11)/2`, then the value of a2 + 2b2 is equal to ______.


The locus of the midpoints of the chord of the circle, x2 + y2 = 25 which is tangent to the hyperbola, `x^2/9 - y^2/16` = 1 is ______.


A line parallel to the straight line 2x – y = 0 is tangent to the hyperbola `x^2/4 - y^2/2` = 1 at the point (x1, y1). Then `x_1^2 + 5y_1^2` is equal to ______.


The foci of a hyperbola coincide with the foci of the ellipse `x^2/25 + y^2/9` = 1. Find the equation of the hyperbola, if its eccentricity is 2.


(x – 1)2 + (y – 2)2 = `(3(2x + 3y + 2)^2)/13`represents hyperbola whose eccentricity is ______.


The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point of intersection of the lines `x - 3sqrt(5)y` = 0 and `sqrt(5)x - 2y` = 13 and the length of its latus rectum is `4/3` units. The coordinates of its focus are ______.


The equation of conjugate axis for the hyperbola `(x + y + 1)^2/4 - (x - y + 2)^2/9` = 1 is ______.


The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point of intersection of the lines, 7x + 13y – 87 = 0 and 5x – 8y + 7 = 0, the latus rectum is `32sqrt(2)/5`. The value of `(asqrt(2) + b)` will be ______.


If the radii of director circles of `x^2/a^2 + y^2/b^2` = 1 and `x^2/a^2 - y^2/b^2` = (a > b) are 2r and r respectively, then `e_2^2/e_1^2` is equal to ______.

(where e1, e2 are their eccentricities respectively)


Let e1 and e2 be the eccentricities of the ellipse, `x^2/25 + y^2/b^2` = 1 (b < 5) and the hyperbola, `x^2/16 - y^2/b^2` = 1 respectively satisfying e1e2 = 1. If α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair (α, β) is equal to ______.


The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point `(3sqrt(5), 1)` and the length of its latus rectum is `4/3` units. The length of the conjugate axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×