Advertisements
Advertisements
प्रश्न
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
x2 – y2 = 16
उत्तर
Given equation of the hyperbola is x2 – y2 = 16
∴ `x^2/16 - y^2/16` = 1
Comparing this equation with `x^2/"a"^2 - y^2/"b"^2` = 1, we get
a2 = 16 and b2 = 16
∴ a = 4 and b = 4
Length of transverse axis = 2a = 2(4) = 8
Length of conjugate axis = 2b = 2(4) = 8
We know that
e =`sqrt("a"^2 + "b"^2)/"a"`
= `sqrt(16 + 16)/4`
= `sqrt(32)/4`
= `(4sqrt(2))/4`
= `sqrt(2)`
Co-ordinates of foci are S(ae, 0) and S'(– ae, 0),
i.e., `"S"(4sqrt(2), 0)` and `"S""'"(-4 sqrt(2), 0)`
Equations of the directrices are x = `± "a"/"e"`.
∴ x = `± 4/sqrt(2)`
∴ x = `±2sqrt(2)`
Length of latus rectum = `(2"b"^2)/"a"`
= `(2(16))/4`
= 8.
APPEARS IN
संबंधित प्रश्न
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
3x2 – y2 = 4
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
`y^2/25 - x^2/9` = 1
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
`x^2/100 - y^2/25` = + 1
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
x = 2 sec θ, y = `2sqrt(3) tan theta`
If e and e' are the eccentricities of a hyperbola and its conjugate hyperbola respectively, prove that `1/"e"^2 + 1/("e""'")^2` = 1
Find the equation of the hyperbola referred to its principal axes:
whose distance between foci is 10 and eccentricity `5/2`
Find the equation of the hyperbola referred to its principal axes:
whose distance between foci is 10 and length of conjugate axis 6
Find the equation of the hyperbola referred to its principal axes:
which passes through the points (6, 9) and (3, 0)
Find the equation of the hyperbola referred to its principal axes:
whose vertices are (± 7, 0) and end points of conjugate axis are (0, ±3)
Find the equation of the hyperbola referred to its principal axes:
whose length of transverse and conjugate axis are 6 and 9 respectively
Find the equation of the hyperbola referred to its principal axes:
whose length of transverse axis is 8 and distance between foci is 10
Find the equation of the tangent to the hyperbola:
`x^2/16 - y^2/9` = 1 at the point in a first quadratures whose ordinate is 3
Find the equation of the tangent to the hyperbola:
9x2 – 16y2 = 144 at the point L of latus rectum in the first quadrant
Show that the line 3x – 4y + 10 = 0 is tangent till the hyperbola x2 – 4y2 = 20. Also find the point of contact
Find the equations of the tangents to the hyperbola `x^2/25 - y^2/9` = 1 making equal intercepts on the co-ordinate axes
Select the correct option from the given alternatives:
Eccentricity of the hyperbola 16x2 − 3y2 − 32x − 12y − 44 = 0 is
Select the correct option from the given alternatives:
If the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24, the point of contact is
Select the correct option from the given alternatives:
The foci of hyperbola 4x2 − 9y2 − 36 = 0 are
Answer the following:
Find the equation of the hyperbola in the standard form if Length of conjugate axis is 5 and distance between foci is 13.
Answer the following:
Find the equation of the hyperbola in the standard form if eccentricity is `3/2` and distance between foci is 12.
Answer the following:
Find the equation of the hyperbola in the standard form if length of the conjugate axis is 3 and distance between the foci is 5.
Answer the following:
Find the equation of the tangent to the hyperbola 7x2 − 3y2 = 51 at (−3, −2)
Answer the following:
Show that the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24. Find the point of contact
Answer the following:
Find the equations of the tangents to the hyperbola 3x2 − y2 = 48 which are perpendicular to the line x + 2y − 7 = 0
The asymptotes of the hyperbola xy = hx + ky are ______.
(x – 1)2 + (y – 2)2 = `(3(2x + 3y + 2)^2)/13`represents hyperbola whose eccentricity is ______.
If the radii of director circles of `x^2/a^2 + y^2/b^2` = 1 and `x^2/a^2 - y^2/b^2` = (a > b) are 2r and r respectively, then `e_2^2/e_1^2` is equal to ______.
(where e1, e2 are their eccentricities respectively)
The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point `(3sqrt(5), 1)` and the length of its latus rectum is `4/3` units. The length of the conjugate axis is ______.
The eccentricity of the hyperbola x2 – 3y2 = 2x + 8 is ______.