हिंदी

Find the equation of the tangent to the hyperbola: 9x2 – 16y2 = 144 at the point L of latus rectum in the first quadrant - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the equation of the tangent to the hyperbola:

9x2 – 16y2 = 144 at the point L of latus rectum in the first quadrant

योग

उत्तर

The equation of the hyperbola is 9x2 – 16y2 = 144

i.e. `x^2/16 - y^2/9` = 1

Comparing with `x^2/"a"^2 - y^2/"b"^2` = 1, we get,

a2 = 16, b2 = 9

∴ a = 4, b = 3

Eccentricity = e = `sqrt("a"^2 + "b"^2)/"a"`

= `sqrt(16 + 9)/4`

= `5/4`

∴ ae = `4(5/4)` = 5

and `"b"^2/"a" = 9/4`

∴ the end of latus rectum in the first quadrant is

L = `("ae", "b"^2/"a") = (5, 9/4)`

The equation of the tangent to `x^2/"a"^2 - y^2/"b"^2` = 1 at the point (x1, y1) is `("xx"_1)/"a"^2 - ("yy"_1)/"b"^2` = 1

∴ the equation of the tangent to given hyperbola at L is

`(x(5))/16 - (y(9/4))/9` = 1

∴ `(5x)/16 - y/4` = 1 i.e., 5x – 4y = 16.

shaalaa.com
Conic Sections - Hyperbola
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Conic Sections - Exercise 7.3 [पृष्ठ १७५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Conic Sections
Exercise 7.3 | Q 6. (v) | पृष्ठ १७५

संबंधित प्रश्न

Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`x^2/25 - y^2/16` = 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`x^2/25 - y^2/16` = – 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

21x2 – 4y2 = 84


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

x2 – y2 = 16


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`y^2/25 - x^2/9` = 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

x = 2 sec θ, y = `2sqrt(3) tan theta`


If e and e' are the eccentricities of a hyperbola and its conjugate hyperbola respectively, prove that `1/"e"^2 + 1/("e""'")^2` = 1


Find the equation of the hyperbola referred to its principal axes:

whose distance between foci is 10 and length of conjugate axis 6


Find the equation of the hyperbola referred to its principal axes:

whose distance between directrices is `8/3` and eccentricity is `3/2`


Find the equation of the hyperbola referred to its principal axes:

whose length of conjugate axis = 12 and passing through (1, – 2)


Find the equation of the hyperbola referred to its principal axes:

which passes through the points (6, 9) and (3, 0)


Find the equation of the hyperbola referred to its principal axes:

whose length of transverse and conjugate axis are 6 and 9 respectively


Find the equation of the hyperbola referred to its principal axes:

whose length of transverse axis is 8 and distance between foci is 10


Find the equation of the tangent to the hyperbola:

`x^2/144 - y^2/25` = 1 at the point whose eccentric angle is `pi/3`


Show that the line 3x – 4y + 10 = 0 is tangent till the hyperbola x2 – 4y2 = 20. Also find the point of contact


If the 3x – 4y = k touches the hyperbola `x^2/5 - (4y^2)/5` = 1 then find the value of k


Select the correct option from the given alternatives

The eccentricity of rectangular hyperbola is


Answer the following:

Find the equation of the hyperbola in the standard form if length of the conjugate axis is 3 and distance between the foci is 5.


Answer the following:

Find the equations of the tangents to the hyperbola 3x2 − y2 = 48 which are perpendicular to the line x + 2y − 7 = 0


The eccentricity of the hyperbola 25x2 - 9y2 = 225 is ______.


The locus of the midpoints of the chord of the circle, x2 + y2 = 25 which is tangent to the hyperbola, `x^2/9 - y^2/16` = 1 is ______.


The asymptotes of the hyperbola xy = hx + ky are ______.


The foci of a hyperbola coincide with the foci of the ellipse `x^2/25 + y^2/9` = 1. Find the equation of the hyperbola, if its eccentricity is 2.


Parametric form of the hyperbola `x^2/4 - y^2/9` = –1 is ______.


The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point of intersection of the lines `x - 3sqrt(5)y` = 0 and `sqrt(5)x - 2y` = 13 and the length of its latus rectum is `4/3` units. The coordinates of its focus are ______.


The number of points from where a pair of perpendicular tangents can be drawn to the hyperbola, x2sec2α – y2cosec2α = 1, `α∈(0, π/4)` are ______.


Let the hyperbola H : `x^2/a^2 - y^2/b^2` = 1 pass `(2sqrt(2), -2sqrt(2))`. A parabola is drawn whose focus is same as the focus of H with positive abscissa and the directrix of the parabola passes through the other focus of H. If the length of the latus rectum of the parabola is e times the length of the latus rectum of H, where e is the eccentricity of H, then which of the following points lies on the parabola?


For the Hyperbola `x^2/(cos^2α) - y^2/(sin^2α)` = 1, which of the following remains constant when α varies = ?


The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point `(3sqrt(5), 1)` and the length of its latus rectum is `4/3` units. The length of the conjugate axis is ______.


The eccentricity of the hyperbola x2 – 3y2 = 2x + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×