हिंदी

Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola: x225-y216 = – 1 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`x^2/25 - y^2/16` = – 1

योग

उत्तर

Given equation of the hyperbola is `x^2/25 - y^2/16` = – 1.

∴ `y^2/16 - x^2/25` = 1

Comparing this equation with

`y^2/"b"^2 - x^2/"a"^2` = 1, we get

b2 = 16 and a2 = 25

∴ b = 4 and a = 5

Length of transverse axis = 2b = 2(4) = 8

Length of conjugate axis = 2a = 2(5) = 10

Co-ordinates of vertices are

B(0, b) and B'(0, – b)

i.e., B(0, 4) and B'(0, – 4)

We know that

e = `sqrt("b"^2 + "a"^2)/"b"`

= `sqrt(16 + 25)/4`

= `sqrt(41)/4`

Co-ordinates of foci are S(0, be) and S'(0, –be),

i.e., `"S"(0, 4(sqrt(41)/4))` and `"S""'"(0, - 4(sqrt(41)/4))`,

i.e., `"S"(0, sqrt(41))` and `"S""'"(0, -sqrt(41))`

Equations of the directrices are y = `± "b"/"e"`.

∴ y = `± 4/(sqrt(41)/4`

∴ y = `± 16/sqrt(41)`

Length of latus-rectum = `(2"a"^2)/"b"`

= `(2(25))/4`

= `25/2`.

shaalaa.com
Conic Sections - Hyperbola
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Conic Sections - Exercise 7.3 [पृष्ठ १७४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Conic Sections
Exercise 7.3 | Q 1. (ii) | पृष्ठ १७४

संबंधित प्रश्न

Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`x^2/25 - y^2/16` = 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

21x2 – 4y2 = 84


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

3x2 – y2 = 4


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`y^2/25 - x^2/144` = 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`x^2/100 - y^2/25` = + 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

x = 2 sec θ, y = `2sqrt(3) tan theta`


If e and e' are the eccentricities of a hyperbola and its conjugate hyperbola respectively, prove that `1/"e"^2 + 1/("e""'")^2` = 1


Find the equation of the hyperbola referred to its principal axes:

whose length of conjugate axis = 12 and passing through (1, – 2)


Find the equation of the hyperbola referred to its principal axes:

which passes through the points (6, 9) and (3, 0)


Find the equation of the hyperbola referred to its principal axes:

whose foci are at (±2, 0) and eccentricity `3/2`


Find the equation of the hyperbola referred to its principal axes:

whose length of transverse and conjugate axis are 6 and 9 respectively


Find the equation of the tangent to the hyperbola:

3x2 – y2 = 4 at the point `(2, 2sqrt(2))`


Show that the line 3x – 4y + 10 = 0 is tangent till the hyperbola x2 – 4y2 = 20. Also find the point of contact


If the 3x – 4y = k touches the hyperbola `x^2/5 - (4y^2)/5` = 1 then find the value of k


Find the equations of the tangents to the hyperbola `x^2/25 - y^2/9` = 1 making equal intercepts on the co-ordinate axes


Find the equations of the tangents to the hyperbola 5x2 – 4y2 = 20 which are parallel to the line 3x + 2y + 12 = 0


Select the correct option from the given alternatives

The eccentricity of rectangular hyperbola is


Select the correct option from the given alternatives:

Eccentricity of the hyperbola 16x2 − 3y2 − 32x − 12y − 44 = 0 is


Select the correct option from the given alternatives:

If the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24, the point of contact is


Answer the following:

Find the equation of the tangent to the hyperbola 7x2 − 3y2 = 51 at (−3, −2)


Answer the following:

Find the equation of the tangent to the hyperbola `x^2/25 − y^2/16` = 1 at P(30°)


Answer the following:

Two tangents to the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1 make angles θ1, θ2, with the transverse axis. Find the locus of their point of intersection if tan θ1 + tan θ2 = k


If P(x1, y1) is a point on the hyperbola x2 - y2 = a2, then SP. S'P = ______.


The eccentricity of the hyperbola 25x2 - 9y2 = 225 is ______.


The locus of the midpoints of the chord of the circle, x2 + y2 = 25 which is tangent to the hyperbola, `x^2/9 - y^2/16` = 1 is ______.


A line parallel to the straight line 2x – y = 0 is tangent to the hyperbola `x^2/4 - y^2/2` = 1 at the point (x1, y1). Then `x_1^2 + 5y_1^2` is equal to ______.


The asymptotes of the hyperbola xy = hx + ky are ______.


The foci of a hyperbola coincide with the foci of the ellipse `x^2/25 + y^2/9` = 1. Find the equation of the hyperbola, if its eccentricity is 2.


The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point of intersection of the lines `x - 3sqrt(5)y` = 0 and `sqrt(5)x - 2y` = 13 and the length of its latus rectum is `4/3` units. The coordinates of its focus are ______.


If the radii of director circles of `x^2/a^2 + y^2/b^2` = 1 and `x^2/a^2 - y^2/b^2` = (a > b) are 2r and r respectively, then `e_2^2/e_1^2` is equal to ______.

(where e1, e2 are their eccentricities respectively)


Let the hyperbola H : `x^2/a^2 - y^2/b^2` = 1 pass `(2sqrt(2), -2sqrt(2))`. A parabola is drawn whose focus is same as the focus of H with positive abscissa and the directrix of the parabola passes through the other focus of H. If the length of the latus rectum of the parabola is e times the length of the latus rectum of H, where e is the eccentricity of H, then which of the following points lies on the parabola?


Let a > 0, b > 0. Let e and l respectively be the eccentricity and length of the latus rectum of the hyperbola `x^2/"a"^2 - "y"^2/"b"^2` = 1. Let e' and l' respectively the eccentricity and length of the latus rectum of its conjugate hyperbola. If e2 = `11/14"l'"` and (e')2 = `11/8"l"^'` then the value of 77a + 44b is equal to ______.


Let e1 and e2 be the eccentricities of the ellipse, `x^2/25 + y^2/b^2` = 1 (b < 5) and the hyperbola, `x^2/16 - y^2/b^2` = 1 respectively satisfying e1e2 = 1. If α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair (α, β) is equal to ______.


The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point `(3sqrt(5), 1)` and the length of its latus rectum is `4/3` units. The length of the conjugate axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×