हिंदी

Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola: 3x2 – y2 = 4 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

3x2 – y2 = 4

योग

उत्तर

The equation of the hyperbola is 3x2 – y2 = 4

i.e. `x^2/((4/3)) - y^2/4` = 1

Comparing with `x^2/"a"^2 - y^2/"b"^2` = 1, we get

a2 = `4/3`, b2 = 4

∴ a = `2/sqrt(3)`, b = 2

(1) Length of transverse axis = 2a = `2(2/sqrt(3)) = 4/sqrt(3)`

(2) Length of conjugate axis = 2b = 2(2) = 4

(3) Eccentricity = e = `sqrt("a"^2 + "b"^2)/"a"`

= `sqrt(4/3 + 4)/((2/sqrt(3))`

= 2

(4) ae = `(2/sqrt(3))(2) = 4/sqrt(3)`

Coordinates of foci = (± ae, 0) = `(± 4/sqrt(3), 0)`

(5) `"a"/"e" = ((2/sqrt(3)))/2 = 1/sqrt(3)`

The equations of directrices are

x = `± "a"/"e"` i.e., x = `± 1/sqrt(3)`

(6) Length of latus rectum = `(2"b"^2)/"a"`

= `(2(4))/((2/sqrt(3))`

= `4sqrt(3)`

shaalaa.com
Conic Sections - Hyperbola
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Conic Sections - Exercise 7.3 [पृष्ठ १७४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Conic Sections
Exercise 7.3 | Q 1. (v) | पृष्ठ १७४

संबंधित प्रश्न

Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`x^2/25 - y^2/16` = 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`x^2/25 - y^2/16` = – 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

16x2 – 9y2 = 144


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

21x2 – 4y2 = 84


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`y^2/25 - x^2/9` = 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`x^2/100 - y^2/25` = + 1


Find the equation of the hyperbola with centre at the origin, length of conjugate axis 10 and one of the foci (–7, 0).


If e and e' are the eccentricities of a hyperbola and its conjugate hyperbola respectively, prove that `1/"e"^2 + 1/("e""'")^2` = 1


Find the equation of the hyperbola referred to its principal axes:

whose distance between foci is 10 and eccentricity `5/2`


Find the equation of the hyperbola referred to its principal axes:

whose distance between foci is 10 and length of conjugate axis 6


Find the equation of the hyperbola referred to its principal axes:

whose distance between directrices is `8/3` and eccentricity is `3/2`


Find the equation of the hyperbola referred to its principal axes:

whose vertices are (± 7, 0) and end points of conjugate axis are (0, ±3)


Find the equation of the hyperbola referred to its principal axes:

whose length of transverse and conjugate axis are 6 and 9 respectively


Find the equation of the tangent to the hyperbola:

3x2 – 4y2 = 12 at the point (4, 3)


Find the equation of the tangent to the hyperbola:

9x2 – 16y2 = 144 at the point L of latus rectum in the first quadrant


If the 3x – 4y = k touches the hyperbola `x^2/5 - (4y^2)/5` = 1 then find the value of k


Find the equations of the tangents to the hyperbola `x^2/25 - y^2/9` = 1 making equal intercepts on the co-ordinate axes


Select the correct option from the given alternatives

The eccentricity of rectangular hyperbola is


Select the correct option from the given alternatives:

If the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24, the point of contact is


Answer the following:

For the hyperbola `x^2/100−y^2/25` = 1, prove that SA. S'A = 25, where S and S' are the foci and A is the vertex


Answer the following:

Find the equation of the hyperbola in the standard form if Length of conjugate axis is 5 and distance between foci is 13.


Answer the following:

Find the equation of the hyperbola in the standard form if eccentricity is `3/2` and distance between foci is 12.


Answer the following:

Find the equation of the tangent to the hyperbola x = 3 secθ, y = 5 tanθ at θ = `pi/3`


Answer the following:

Show that the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24. Find the point of contact


The foci of a hyperbola coincide with the foci of the ellipse `x^2/25 + y^2/9` = 1. Find the equation of the hyperbola, if its eccentricity is 2.


(x – 1)2 + (y – 2)2 = `(3(2x + 3y + 2)^2)/13`represents hyperbola whose eccentricity is ______.


Parametric form of the hyperbola `x^2/4 - y^2/9` = –1 is ______.


The equation of conjugate axis for the hyperbola `(x + y + 1)^2/4 - (x - y + 2)^2/9` = 1 is ______.


The locus of the mid-point of the chords of the hyperbola `(x^2/a^2) - (y^2/b^2)` = 1 passing through a fixed point (α, β) is a hyperbola with centre at `(α/2, β/2)` It equation is ______.


Let e1 and e2 be the eccentricities of the ellipse, `x^2/25 + y^2/b^2` = 1 (b < 5) and the hyperbola, `x^2/16 - y^2/b^2` = 1 respectively satisfying e1e2 = 1. If α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair (α, β) is equal to ______.


The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point `(3sqrt(5), 1)` and the length of its latus rectum is `4/3` units. The length of the conjugate axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×