Advertisements
Advertisements
प्रश्न
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
3x2 – y2 = 4
उत्तर
The equation of the hyperbola is 3x2 – y2 = 4
i.e. `x^2/((4/3)) - y^2/4` = 1
Comparing with `x^2/"a"^2 - y^2/"b"^2` = 1, we get
a2 = `4/3`, b2 = 4
∴ a = `2/sqrt(3)`, b = 2
(1) Length of transverse axis = 2a = `2(2/sqrt(3)) = 4/sqrt(3)`
(2) Length of conjugate axis = 2b = 2(2) = 4
(3) Eccentricity = e = `sqrt("a"^2 + "b"^2)/"a"`
= `sqrt(4/3 + 4)/((2/sqrt(3))`
= 2
(4) ae = `(2/sqrt(3))(2) = 4/sqrt(3)`
Coordinates of foci = (± ae, 0) = `(± 4/sqrt(3), 0)`
(5) `"a"/"e" = ((2/sqrt(3)))/2 = 1/sqrt(3)`
The equations of directrices are
x = `± "a"/"e"` i.e., x = `± 1/sqrt(3)`
(6) Length of latus rectum = `(2"b"^2)/"a"`
= `(2(4))/((2/sqrt(3))`
= `4sqrt(3)`
APPEARS IN
संबंधित प्रश्न
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
16x2 – 9y2 = 144
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
x2 – y2 = 16
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
`y^2/25 - x^2/9` = 1
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
`y^2/25 - x^2/144` = 1
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
`x^2/100 - y^2/25` = + 1
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
x = 2 sec θ, y = `2sqrt(3) tan theta`
Find the equation of the hyperbola referred to its principal axes:
whose distance between foci is 10 and eccentricity `5/2`
Find the equation of the hyperbola referred to its principal axes:
which passes through the points (6, 9) and (3, 0)
Find the equation of the hyperbola referred to its principal axes:
whose foci are at (±2, 0) and eccentricity `3/2`
Find the equation of the tangent to the hyperbola:
3x2 – y2 = 4 at the point `(2, 2sqrt(2))`
Find the equation of the tangent to the hyperbola:
`x^2/144 - y^2/25` = 1 at the point whose eccentric angle is `pi/3`
Find the equation of the tangent to the hyperbola:
9x2 – 16y2 = 144 at the point L of latus rectum in the first quadrant
Show that the line 3x – 4y + 10 = 0 is tangent till the hyperbola x2 – 4y2 = 20. Also find the point of contact
Find the equations of the tangents to the hyperbola `x^2/25 - y^2/9` = 1 making equal intercepts on the co-ordinate axes
Find the equations of the tangents to the hyperbola 5x2 – 4y2 = 20 which are parallel to the line 3x + 2y + 12 = 0
Select the correct option from the given alternatives:
If the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24, the point of contact is
Select the correct option from the given alternatives:
The foci of hyperbola 4x2 − 9y2 − 36 = 0 are
Answer the following:
Find the equation of the hyperbola in the standard form if eccentricity is `3/2` and distance between foci is 12.
Answer the following:
Find the equation of the tangent to the hyperbola x = 3 secθ, y = 5 tanθ at θ = `pi/3`
Answer the following:
Find the equation of the tangent to the hyperbola `x^2/25 − y^2/16` = 1 at P(30°)
Answer the following:
Show that the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24. Find the point of contact
Answer the following:
Two tangents to the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1 make angles θ1, θ2, with the transverse axis. Find the locus of their point of intersection if tan θ1 + tan θ2 = k
The eccentricity of the hyperbola 25x2 - 9y2 = 225 is ______.
Let H: `x^2/a^2 - y^2/b^2` = 1, a > 0, b > 0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is `4(2sqrt(2) + sqrt(14))`. If the eccentricity H is `sqrt(11)/2`, then the value of a2 + 2b2 is equal to ______.
The asymptotes of the hyperbola xy = hx + ky are ______.
The foci of a hyperbola coincide with the foci of the ellipse `x^2/25 + y^2/9` = 1. Find the equation of the hyperbola, if its eccentricity is 2.
The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point of intersection of the lines `x - 3sqrt(5)y` = 0 and `sqrt(5)x - 2y` = 13 and the length of its latus rectum is `4/3` units. The coordinates of its focus are ______.
The equation of conjugate axis for the hyperbola `(x + y + 1)^2/4 - (x - y + 2)^2/9` = 1 is ______.
The locus of the mid-point of the chords of the hyperbola `(x^2/a^2) - (y^2/b^2)` = 1 passing through a fixed point (α, β) is a hyperbola with centre at `(α/2, β/2)` It equation is ______.
The number of points from where a pair of perpendicular tangents can be drawn to the hyperbola, x2sec2α – y2cosec2α = 1, `α∈(0, π/4)` are ______.
The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point of intersection of the lines, 7x + 13y – 87 = 0 and 5x – 8y + 7 = 0, the latus rectum is `32sqrt(2)/5`. The value of `(asqrt(2) + b)` will be ______.
If the radii of director circles of `x^2/a^2 + y^2/b^2` = 1 and `x^2/a^2 - y^2/b^2` = (a > b) are 2r and r respectively, then `e_2^2/e_1^2` is equal to ______.
(where e1, e2 are their eccentricities respectively)
Let e1 and e2 be the eccentricities of the ellipse, `x^2/25 + y^2/b^2` = 1 (b < 5) and the hyperbola, `x^2/16 - y^2/b^2` = 1 respectively satisfying e1e2 = 1. If α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair (α, β) is equal to ______.
The eccentricity of the hyperbola x2 – 3y2 = 2x + 8 is ______.