मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following: Find the equation of the tangent to the hyperbola x = 3 secθ, y = 5 tanθ at θ = π3 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Find the equation of the tangent to the hyperbola x = 3 secθ, y = 5 tanθ at θ = `pi/3`

बेरीज

उत्तर

Given, equation of the hyperbola is

x = 3 sec θ, y = 5 tan θ.

Since sec2θ  –  tan2θ = 1,

`x^2/9 - y^2/25` = 1

Comparing this equation with `x^2/"a"^2 - y^2/"b"^2` = 1, we get

a2 = 9 and b2 = 25

∴ a = 3 and b = 5

Equation of tangent at P(θ) is

`(xsectheta)/"a" - (ytantheta)/"b"` = 1

∴ Equation of tangent at P`(pi/3)` is

`(xsec(pi/3))/3 - (ytan(pi/3))/5` = 1

∴ `(2x)/3 - (sqrt(3)y)/5` = 1

∴ `10x - 3sqrt(3)y` = 15

shaalaa.com
Conic Sections - Hyperbola
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Conic Sections - Miscellaneous Exercise 7 [पृष्ठ १७८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 7 Conic Sections
Miscellaneous Exercise 7 | Q II. (23) (ii) | पृष्ठ १७८

संबंधित प्रश्‍न

Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

21x2 – 4y2 = 84


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

x2 – y2 = 16


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`y^2/25 - x^2/9` = 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`y^2/25 - x^2/144` = 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`x^2/100 - y^2/25` = + 1


If e and e' are the eccentricities of a hyperbola and its conjugate hyperbola respectively, prove that `1/"e"^2 + 1/("e""'")^2` = 1


Find the equation of the hyperbola referred to its principal axes:

whose distance between foci is 10 and eccentricity `5/2`


Find the equation of the hyperbola referred to its principal axes:

whose distance between foci is 10 and length of conjugate axis 6


Find the equation of the hyperbola referred to its principal axes:

whose distance between directrices is `8/3` and eccentricity is `3/2`


Find the equation of the hyperbola referred to its principal axes:

whose length of conjugate axis = 12 and passing through (1, – 2)


Find the equation of the hyperbola referred to its principal axes:

which passes through the points (6, 9) and (3, 0)


Find the equation of the hyperbola referred to its principal axes:

whose foci are at (±2, 0) and eccentricity `3/2`


Find the equation of the hyperbola referred to its principal axes:

whose length of transverse and conjugate axis are 6 and 9 respectively


Find the equation of the hyperbola referred to its principal axes:

whose length of transverse axis is 8 and distance between foci is 10


Find the equations of the tangents to the hyperbola `x^2/25 - y^2/9` = 1 making equal intercepts on the co-ordinate axes


Select the correct option from the given alternatives:

Eccentricity of the hyperbola 16x2 − 3y2 − 32x − 12y − 44 = 0 is


Select the correct option from the given alternatives:

If the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24, the point of contact is


Answer the following:

Find the equation of the hyperbola in the standard form if eccentricity is `3/2` and distance between foci is 12.


Answer the following:

Find the equation of the hyperbola in the standard form if length of the conjugate axis is 3 and distance between the foci is 5.


Answer the following:

Find the equation of the tangent to the hyperbola 7x2 − 3y2 = 51 at (−3, −2)


Answer the following:

Show that the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24. Find the point of contact


Answer the following:

Find the equations of the tangents to the hyperbola 3x2 − y2 = 48 which are perpendicular to the line x + 2y − 7 = 0


Answer the following:

Two tangents to the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1 make angles θ1, θ2, with the transverse axis. Find the locus of their point of intersection if tan θ1 + tan θ2 = k


The eccentricity of the hyperbola 25x2 - 9y2 = 225 is ______.


The locus of the midpoints of the chord of the circle, x2 + y2 = 25 which is tangent to the hyperbola, `x^2/9 - y^2/16` = 1 is ______.


The asymptotes of the hyperbola xy = hx + ky are ______.


Parametric form of the hyperbola `x^2/4 - y^2/9` = –1 is ______.


The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point of intersection of the lines `x - 3sqrt(5)y` = 0 and `sqrt(5)x - 2y` = 13 and the length of its latus rectum is `4/3` units. The coordinates of its focus are ______.


If the radii of director circles of `x^2/a^2 + y^2/b^2` = 1 and `x^2/a^2 - y^2/b^2` = (a > b) are 2r and r respectively, then `e_2^2/e_1^2` is equal to ______.

(where e1, e2 are their eccentricities respectively)


Let e1 and e2 be the eccentricities of the ellipse, `x^2/25 + y^2/b^2` = 1 (b < 5) and the hyperbola, `x^2/16 - y^2/b^2` = 1 respectively satisfying e1e2 = 1. If α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair (α, β) is equal to ______.


The eccentricity of the hyperbola x2 – 3y2 = 2x + 8 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×