Advertisements
Advertisements
Question
Answer the following:
Find the equation of the tangent to the hyperbola x = 3 secθ, y = 5 tanθ at θ = `pi/3`
Solution
Given, equation of the hyperbola is
x = 3 sec θ, y = 5 tan θ.
Since sec2θ – tan2θ = 1,
`x^2/9 - y^2/25` = 1
Comparing this equation with `x^2/"a"^2 - y^2/"b"^2` = 1, we get
a2 = 9 and b2 = 25
∴ a = 3 and b = 5
Equation of tangent at P(θ) is
`(xsectheta)/"a" - (ytantheta)/"b"` = 1
∴ Equation of tangent at P`(pi/3)` is
`(xsec(pi/3))/3 - (ytan(pi/3))/5` = 1
∴ `(2x)/3 - (sqrt(3)y)/5` = 1
∴ `10x - 3sqrt(3)y` = 15
APPEARS IN
RELATED QUESTIONS
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
`x^2/25 - y^2/16` = 1
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
x2 – y2 = 16
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
`y^2/25 - x^2/9` = 1
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
`y^2/25 - x^2/144` = 1
Find the eccentricity of the hyperbola, which is conjugate to the hyperbola x2 – 3y2 = 3
If e and e' are the eccentricities of a hyperbola and its conjugate hyperbola respectively, prove that `1/"e"^2 + 1/("e""'")^2` = 1
Find the equation of the hyperbola referred to its principal axes:
whose distance between foci is 10 and eccentricity `5/2`
Find the equation of the hyperbola referred to its principal axes:
which passes through the points (6, 9) and (3, 0)
Find the equation of the hyperbola referred to its principal axes:
whose vertices are (± 7, 0) and end points of conjugate axis are (0, ±3)
Find the equation of the tangent to the hyperbola:
3x2 – 4y2 = 12 at the point (4, 3)
Find the equation of the tangent to the hyperbola:
`x^2/144 - y^2/25` = 1 at the point whose eccentric angle is `pi/3`
Find the equation of the tangent to the hyperbola:
`x^2/16 - y^2/9` = 1 at the point in a first quadratures whose ordinate is 3
Find the equation of the tangent to the hyperbola:
9x2 – 16y2 = 144 at the point L of latus rectum in the first quadrant
Show that the line 3x – 4y + 10 = 0 is tangent till the hyperbola x2 – 4y2 = 20. Also find the point of contact
If the 3x – 4y = k touches the hyperbola `x^2/5 - (4y^2)/5` = 1 then find the value of k
Find the equations of the tangents to the hyperbola `x^2/25 - y^2/9` = 1 making equal intercepts on the co-ordinate axes
Find the equations of the tangents to the hyperbola 5x2 – 4y2 = 20 which are parallel to the line 3x + 2y + 12 = 0
Select the correct option from the given alternatives:
Eccentricity of the hyperbola 16x2 − 3y2 − 32x − 12y − 44 = 0 is
Answer the following:
Find the equation of the hyperbola in the standard form if Length of conjugate axis is 5 and distance between foci is 13.
Answer the following:
Find the equation of the hyperbola in the standard form if eccentricity is `3/2` and distance between foci is 12.
Answer the following:
Find the equation of the hyperbola in the standard form if length of the conjugate axis is 3 and distance between the foci is 5.
Answer the following:
Find the equation of the tangent to the hyperbola `x^2/25 − y^2/16` = 1 at P(30°)
Answer the following:
Show that the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24. Find the point of contact
If P(x1, y1) is a point on the hyperbola x2 - y2 = a2, then SP. S'P = ______.
The eccentricity of the hyperbola 25x2 - 9y2 = 225 is ______.
Let H: `x^2/a^2 - y^2/b^2` = 1, a > 0, b > 0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is `4(2sqrt(2) + sqrt(14))`. If the eccentricity H is `sqrt(11)/2`, then the value of a2 + 2b2 is equal to ______.
The asymptotes of the hyperbola xy = hx + ky are ______.
Parametric form of the hyperbola `x^2/4 - y^2/9` = –1 is ______.
The locus of the mid-point of the chords of the hyperbola `(x^2/a^2) - (y^2/b^2)` = 1 passing through a fixed point (α, β) is a hyperbola with centre at `(α/2, β/2)` It equation is ______.
Let a > 0, b > 0. Let e and l respectively be the eccentricity and length of the latus rectum of the hyperbola `x^2/"a"^2 - "y"^2/"b"^2` = 1. Let e' and l' respectively the eccentricity and length of the latus rectum of its conjugate hyperbola. If e2 = `11/14"l'"` and (e')2 = `11/8"l"^'` then the value of 77a + 44b is equal to ______.
Let e1 and e2 be the eccentricities of the ellipse, `x^2/25 + y^2/b^2` = 1 (b < 5) and the hyperbola, `x^2/16 - y^2/b^2` = 1 respectively satisfying e1e2 = 1. If α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair (α, β) is equal to ______.
For the Hyperbola `x^2/(cos^2α) - y^2/(sin^2α)` = 1, which of the following remains constant when α varies = ?
The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point `(3sqrt(5), 1)` and the length of its latus rectum is `4/3` units. The length of the conjugate axis is ______.