Advertisements
Advertisements
Question
Find the eccentricity of the hyperbola, which is conjugate to the hyperbola x2 – 3y2 = 3
Solution
Given, equation of hyperbola is x2 – 3y2 = 3.
∴ `x^2/3 - y^2/1` = 1
Equation of the hyperbola conjugate to the above hyperbola is `y^2/1 - x^2/3` = 1.
Comparing this equation with `y^2/"b"^2 - x^2/"a"^2` = 1, we get,
b2 = 1 and a2 = 3
Now, a2 = b2(e2 – 1)
∴ 3 = 1(e2 – 1)
∴ 3 = e2 – 1
∴ e2 = 4
∴ e = 2 ...[∵ e > 1]
APPEARS IN
RELATED QUESTIONS
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
16x2 – 9y2 = 144
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
21x2 – 4y2 = 84
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
3x2 – y2 = 4
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
x2 – y2 = 16
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
`y^2/25 - x^2/9` = 1
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
`x^2/100 - y^2/25` = + 1
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
x = 2 sec θ, y = `2sqrt(3) tan theta`
Find the equation of the hyperbola with centre at the origin, length of conjugate axis 10 and one of the foci (–7, 0).
If e and e' are the eccentricities of a hyperbola and its conjugate hyperbola respectively, prove that `1/"e"^2 + 1/("e""'")^2` = 1
Find the equation of the hyperbola referred to its principal axes:
whose vertices are (± 7, 0) and end points of conjugate axis are (0, ±3)
Find the equation of the hyperbola referred to its principal axes:
whose foci are at (±2, 0) and eccentricity `3/2`
Find the equation of the tangent to the hyperbola:
9x2 – 16y2 = 144 at the point L of latus rectum in the first quadrant
Show that the line 3x – 4y + 10 = 0 is tangent till the hyperbola x2 – 4y2 = 20. Also find the point of contact
Find the equations of the tangents to the hyperbola `x^2/25 - y^2/9` = 1 making equal intercepts on the co-ordinate axes
Find the equations of the tangents to the hyperbola 5x2 – 4y2 = 20 which are parallel to the line 3x + 2y + 12 = 0
Select the correct option from the given alternatives
The eccentricity of rectangular hyperbola is
Select the correct option from the given alternatives:
If the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24, the point of contact is
Answer the following:
For the hyperbola `x^2/100−y^2/25` = 1, prove that SA. S'A = 25, where S and S' are the foci and A is the vertex
Answer the following:
Find the equation of the tangent to the hyperbola x = 3 secθ, y = 5 tanθ at θ = `pi/3`
Answer the following:
Show that the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24. Find the point of contact
If P(x1, y1) is a point on the hyperbola x2 - y2 = a2, then SP. S'P = ______.
Let H: `x^2/a^2 - y^2/b^2` = 1, a > 0, b > 0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is `4(2sqrt(2) + sqrt(14))`. If the eccentricity H is `sqrt(11)/2`, then the value of a2 + 2b2 is equal to ______.
A line parallel to the straight line 2x – y = 0 is tangent to the hyperbola `x^2/4 - y^2/2` = 1 at the point (x1, y1). Then `x_1^2 + 5y_1^2` is equal to ______.
The asymptotes of the hyperbola xy = hx + ky are ______.
The foci of a hyperbola coincide with the foci of the ellipse `x^2/25 + y^2/9` = 1. Find the equation of the hyperbola, if its eccentricity is 2.
The number of points from where a pair of perpendicular tangents can be drawn to the hyperbola, x2sec2α – y2cosec2α = 1, `α∈(0, π/4)` are ______.
The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point of intersection of the lines, 7x + 13y – 87 = 0 and 5x – 8y + 7 = 0, the latus rectum is `32sqrt(2)/5`. The value of `(asqrt(2) + b)` will be ______.
If the radii of director circles of `x^2/a^2 + y^2/b^2` = 1 and `x^2/a^2 - y^2/b^2` = (a > b) are 2r and r respectively, then `e_2^2/e_1^2` is equal to ______.
(where e1, e2 are their eccentricities respectively)
Let the hyperbola H : `x^2/a^2 - y^2/b^2` = 1 pass `(2sqrt(2), -2sqrt(2))`. A parabola is drawn whose focus is same as the focus of H with positive abscissa and the directrix of the parabola passes through the other focus of H. If the length of the latus rectum of the parabola is e times the length of the latus rectum of H, where e is the eccentricity of H, then which of the following points lies on the parabola?
Let a > 0, b > 0. Let e and l respectively be the eccentricity and length of the latus rectum of the hyperbola `x^2/"a"^2 - "y"^2/"b"^2` = 1. Let e' and l' respectively the eccentricity and length of the latus rectum of its conjugate hyperbola. If e2 = `11/14"l'"` and (e')2 = `11/8"l"^'` then the value of 77a + 44b is equal to ______.
For the Hyperbola `x^2/(cos^2α) - y^2/(sin^2α)` = 1, which of the following remains constant when α varies = ?
The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point `(3sqrt(5), 1)` and the length of its latus rectum is `4/3` units. The length of the conjugate axis is ______.
The eccentricity of the hyperbola x2 – 3y2 = 2x + 8 is ______.