Advertisements
Advertisements
Question
Find the equation of the hyperbola referred to its principal axes:
whose vertices are (± 7, 0) and end points of conjugate axis are (0, ±3)
Solution
Let the equation of the hyperbola referred to its principal axes be
`x^2/"a"^2 - y^2/"b"^2` = 1 ...(1)
Then vertices are (±a, 0) which are given to be (±7, 0).
∴ a = 7
Also, end points of conjugate axes are (0, ±b) which are given to be (0, ±3).
∴ b = 3
∴ by (1), the equation of required hyperbola is `x^2/49 - y^2/9` = 1.
APPEARS IN
RELATED QUESTIONS
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
`x^2/25 - y^2/16` = – 1
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
3x2 – y2 = 4
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
x2 – y2 = 16
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
`y^2/25 - x^2/144` = 1
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
`x^2/100 - y^2/25` = + 1
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
x = 2 sec θ, y = `2sqrt(3) tan theta`
Find the equation of the hyperbola with centre at the origin, length of conjugate axis 10 and one of the foci (–7, 0).
Find the eccentricity of the hyperbola, which is conjugate to the hyperbola x2 – 3y2 = 3
Find the equation of the hyperbola referred to its principal axes:
whose length of conjugate axis = 12 and passing through (1, – 2)
Find the equation of the hyperbola referred to its principal axes:
which passes through the points (6, 9) and (3, 0)
Find the equation of the hyperbola referred to its principal axes:
whose length of transverse and conjugate axis are 6 and 9 respectively
Find the equation of the tangent to the hyperbola:
3x2 – 4y2 = 12 at the point (4, 3)
Find the equation of the tangent to the hyperbola:
`x^2/144 - y^2/25` = 1 at the point whose eccentric angle is `pi/3`
Find the equation of the tangent to the hyperbola:
`x^2/16 - y^2/9` = 1 at the point in a first quadratures whose ordinate is 3
Find the equation of the tangent to the hyperbola:
9x2 – 16y2 = 144 at the point L of latus rectum in the first quadrant
If the 3x – 4y = k touches the hyperbola `x^2/5 - (4y^2)/5` = 1 then find the value of k
Select the correct option from the given alternatives:
Eccentricity of the hyperbola 16x2 − 3y2 − 32x − 12y − 44 = 0 is
Select the correct option from the given alternatives:
If the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24, the point of contact is
Answer the following:
For the hyperbola `x^2/100−y^2/25` = 1, prove that SA. S'A = 25, where S and S' are the foci and A is the vertex
Answer the following:
Find the equation of the hyperbola in the standard form if length of the conjugate axis is 3 and distance between the foci is 5.
Answer the following:
Find the equation of the tangent to the hyperbola 7x2 − 3y2 = 51 at (−3, −2)
Answer the following:
Find the equation of the tangent to the hyperbola `x^2/25 − y^2/16` = 1 at P(30°)
Let H: `x^2/a^2 - y^2/b^2` = 1, a > 0, b > 0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is `4(2sqrt(2) + sqrt(14))`. If the eccentricity H is `sqrt(11)/2`, then the value of a2 + 2b2 is equal to ______.
A line parallel to the straight line 2x – y = 0 is tangent to the hyperbola `x^2/4 - y^2/2` = 1 at the point (x1, y1). Then `x_1^2 + 5y_1^2` is equal to ______.
The asymptotes of the hyperbola xy = hx + ky are ______.
(x – 1)2 + (y – 2)2 = `(3(2x + 3y + 2)^2)/13`represents hyperbola whose eccentricity is ______.
The locus of the mid-point of the chords of the hyperbola `(x^2/a^2) - (y^2/b^2)` = 1 passing through a fixed point (α, β) is a hyperbola with centre at `(α/2, β/2)` It equation is ______.
The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point of intersection of the lines, 7x + 13y – 87 = 0 and 5x – 8y + 7 = 0, the latus rectum is `32sqrt(2)/5`. The value of `(asqrt(2) + b)` will be ______.
If the radii of director circles of `x^2/a^2 + y^2/b^2` = 1 and `x^2/a^2 - y^2/b^2` = (a > b) are 2r and r respectively, then `e_2^2/e_1^2` is equal to ______.
(where e1, e2 are their eccentricities respectively)
Let a > 0, b > 0. Let e and l respectively be the eccentricity and length of the latus rectum of the hyperbola `x^2/"a"^2 - "y"^2/"b"^2` = 1. Let e' and l' respectively the eccentricity and length of the latus rectum of its conjugate hyperbola. If e2 = `11/14"l'"` and (e')2 = `11/8"l"^'` then the value of 77a + 44b is equal to ______.
The eccentricity of the hyperbola x2 – 3y2 = 2x + 8 is ______.