English

Find the equation of the hyperbola referred to its principal axes: whose length of conjugate axis = 12 and passing through (1, – 2) - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the equation of the hyperbola referred to its principal axes:

whose length of conjugate axis = 12 and passing through (1, – 2)

Sum

Solution

Let the equation of the hyperbola referred to principal axes be `x^2/"a"^2 - y^2/"b"^2` = 1    ...(1)

Length of conjugate axes = 2b = 12

∴ b = 6

The hyperbola passes through (1, – 2)

∴ `1^2/"a"^2 - (-2)^2/6^2` = 1 ........[∵ b = 6]

∴ `1/"a"^2 = 1 + 1/9 = 10/9`

∴ a2 = `9/10`

∴ by (1), the equation of the required hyperbola is `x^2/((9/10)) - y^2/36` = 1

∴ `(10x^2)/9 - y^2/36` = 1.

shaalaa.com
Conic Sections - Hyperbola
  Is there an error in this question or solution?
Chapter 7: Conic Sections - Exercise 7.3 [Page 175]

RELATED QUESTIONS

Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`x^2/25 - y^2/16` = 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

16x2 – 9y2 = 144


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

3x2 – y2 = 4


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

x2 – y2 = 16


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`y^2/25 - x^2/9` = 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

x = 2 sec θ, y = `2sqrt(3) tan theta`


Find the equation of the hyperbola referred to its principal axes:

whose distance between foci is 10 and eccentricity `5/2`


Find the equation of the hyperbola referred to its principal axes:

whose distance between foci is 10 and length of conjugate axis 6


Find the equation of the hyperbola referred to its principal axes:

whose distance between directrices is `8/3` and eccentricity is `3/2`


Find the equation of the hyperbola referred to its principal axes:

which passes through the points (6, 9) and (3, 0)


Find the equation of the hyperbola referred to its principal axes:

whose vertices are (± 7, 0) and end points of conjugate axis are (0, ±3)


Find the equation of the hyperbola referred to its principal axes:

whose foci are at (±2, 0) and eccentricity `3/2`


Find the equation of the hyperbola referred to its principal axes:

whose length of transverse axis is 8 and distance between foci is 10


Find the equation of the tangent to the hyperbola:

3x2 – y2 = 4 at the point `(2, 2sqrt(2))`


Find the equation of the tangent to the hyperbola:

3x2 – 4y2 = 12 at the point (4, 3)


Find the equation of the tangent to the hyperbola:

`x^2/144 - y^2/25` = 1 at the point whose eccentric angle is `pi/3`


Find the equation of the tangent to the hyperbola:

`x^2/16 - y^2/9` = 1 at the point in a first quadratures whose ordinate is 3


Select the correct option from the given alternatives

The eccentricity of rectangular hyperbola is


Select the correct option from the given alternatives:

Eccentricity of the hyperbola 16x2 − 3y2 − 32x − 12y − 44 = 0 is


Select the correct option from the given alternatives:

If the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24, the point of contact is


Answer the following:

Find the equation of the hyperbola in the standard form if Length of conjugate axis is 5 and distance between foci is 13.


Answer the following:

Find the equation of the hyperbola in the standard form if length of the conjugate axis is 3 and distance between the foci is 5.


Answer the following:

Find the equation of the tangent to the hyperbola x = 3 secθ, y = 5 tanθ at θ = `pi/3`


Answer the following:

Show that the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24. Find the point of contact


Answer the following:

Two tangents to the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1 make angles θ1, θ2, with the transverse axis. Find the locus of their point of intersection if tan θ1 + tan θ2 = k


The eccentricity of the hyperbola 25x2 - 9y2 = 225 is ______.


Let H: `x^2/a^2 - y^2/b^2` = 1, a > 0, b > 0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is `4(2sqrt(2) + sqrt(14))`. If the eccentricity H is `sqrt(11)/2`, then the value of a2 + 2b2 is equal to ______.


The locus of the midpoints of the chord of the circle, x2 + y2 = 25 which is tangent to the hyperbola, `x^2/9 - y^2/16` = 1 is ______.


The asymptotes of the hyperbola xy = hx + ky are ______.


The foci of a hyperbola coincide with the foci of the ellipse `x^2/25 + y^2/9` = 1. Find the equation of the hyperbola, if its eccentricity is 2.


For the Hyperbola `x^2/(cos^2α) - y^2/(sin^2α)` = 1, which of the following remains constant when α varies = ?


The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point `(3sqrt(5), 1)` and the length of its latus rectum is `4/3` units. The length of the conjugate axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×