English

Find the equation of the hyperbola referred to its principal axes: whose distance between foci is 10 and eccentricity 52 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the equation of the hyperbola referred to its principal axes:

whose distance between foci is 10 and eccentricity `5/2`

Sum

Solution

Let the required equation of hyperbola be  `x^2/"a"^2 - y^2/"b"^2` = 1.

Given, eccentricity (e) = `5/2`

Distance between foci = 2ae

Given, distance between foci = 10

∴ 2ae = 10

∴ ae = `10/2` = 5

∴ `"a"(5/2)` = 5

∴ a = 2

∴ a2 = 4

Now, b2 = a2(e2 – 1)

∴ b2 = `4[(5/2)^2 - 1]`

= `4(25/4 - 1)`

= `4(21/4)`

∴ b2 = 21

∴ The required equation of hyperbola is `x^2/4 - y^2/21` = 1.

shaalaa.com
Conic Sections - Hyperbola
  Is there an error in this question or solution?
Chapter 7: Conic Sections - Exercise 7.3 [Page 174]

RELATED QUESTIONS

Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`x^2/25 - y^2/16` = – 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

21x2 – 4y2 = 84


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

x2 – y2 = 16


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`y^2/25 - x^2/9` = 1


Find the equation of the hyperbola with centre at the origin, length of conjugate axis 10 and one of the foci (–7, 0).


Find the equation of the hyperbola referred to its principal axes:

whose distance between foci is 10 and length of conjugate axis 6


Find the equation of the hyperbola referred to its principal axes:

whose length of conjugate axis = 12 and passing through (1, – 2)


Find the equation of the hyperbola referred to its principal axes:

whose foci are at (±2, 0) and eccentricity `3/2`


Find the equation of the hyperbola referred to its principal axes:

whose length of transverse and conjugate axis are 6 and 9 respectively


Find the equation of the hyperbola referred to its principal axes:

whose length of transverse axis is 8 and distance between foci is 10


Find the equation of the tangent to the hyperbola:

3x2 – y2 = 4 at the point `(2, 2sqrt(2))`


Find the equation of the tangent to the hyperbola:

`x^2/144 - y^2/25` = 1 at the point whose eccentric angle is `pi/3`


Find the equation of the tangent to the hyperbola:

`x^2/16 - y^2/9` = 1 at the point in a first quadratures whose ordinate is 3


Find the equations of the tangents to the hyperbola `x^2/25 - y^2/9` = 1 making equal intercepts on the co-ordinate axes


Find the equations of the tangents to the hyperbola 5x2 – 4y2 = 20 which are parallel to the line 3x + 2y + 12 = 0


Select the correct option from the given alternatives:

Eccentricity of the hyperbola 16x2 − 3y2 − 32x − 12y − 44 = 0 is


Select the correct option from the given alternatives:

If the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24, the point of contact is


Answer the following:

For the hyperbola `x^2/100−y^2/25` = 1, prove that SA. S'A = 25, where S and S' are the foci and A is the vertex


Answer the following:

Find the equation of the hyperbola in the standard form if Length of conjugate axis is 5 and distance between foci is 13.


Answer the following:

Find the equation of the hyperbola in the standard form if eccentricity is `3/2` and distance between foci is 12.


Answer the following:

Find the equation of the tangent to the hyperbola `x^2/25 − y^2/16` = 1 at P(30°)


Answer the following:

Show that the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24. Find the point of contact


Answer the following:

Find the equations of the tangents to the hyperbola 3x2 − y2 = 48 which are perpendicular to the line x + 2y − 7 = 0


The eccentricity of the hyperbola 25x2 - 9y2 = 225 is ______.


Parametric form of the hyperbola `x^2/4 - y^2/9` = –1 is ______.


The equation of conjugate axis for the hyperbola `(x + y + 1)^2/4 - (x - y + 2)^2/9` = 1 is ______.


The locus of the mid-point of the chords of the hyperbola `(x^2/a^2) - (y^2/b^2)` = 1 passing through a fixed point (α, β) is a hyperbola with centre at `(α/2, β/2)` It equation is ______.


The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point of intersection of the lines, 7x + 13y – 87 = 0 and 5x – 8y + 7 = 0, the latus rectum is `32sqrt(2)/5`. The value of `(asqrt(2) + b)` will be ______.


Let the hyperbola H : `x^2/a^2 - y^2/b^2` = 1 pass `(2sqrt(2), -2sqrt(2))`. A parabola is drawn whose focus is same as the focus of H with positive abscissa and the directrix of the parabola passes through the other focus of H. If the length of the latus rectum of the parabola is e times the length of the latus rectum of H, where e is the eccentricity of H, then which of the following points lies on the parabola?


Let e1 and e2 be the eccentricities of the ellipse, `x^2/25 + y^2/b^2` = 1 (b < 5) and the hyperbola, `x^2/16 - y^2/b^2` = 1 respectively satisfying e1e2 = 1. If α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair (α, β) is equal to ______.


For the Hyperbola `x^2/(cos^2α) - y^2/(sin^2α)` = 1, which of the following remains constant when α varies = ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×