Advertisements
Advertisements
Question
Answer the following:
Find the equation of the tangent to the hyperbola 7x2 − 3y2 = 51 at (−3, −2)
Solution
The equation of the hyperbola is 7x2 − 3y2 = 51
i.e. `x^2/((51/7)) - y^2/17` = 1
Comparing with `x^2/"a"^2 - y^2/"b"^2` = 1, we get,
a2 = `51/7`, b2 = 17
The equation of the tangent to `x^2/"a"^2 - y^2/"b"^2` = 1 at the point (x1, y1) on it is
`("xx"_1)/"a"^2 = (yy_1)/"b"^2` = 1
∴ the equation of the tangent to the given hyperbola at the point (–3, –2) is
`(-3x)/((51/7)) + (2y)/17` = 1
∴ `(-7x)/17 + (2y)/17` = 1
∴ 7x – 2y + 17 = 0.
APPEARS IN
RELATED QUESTIONS
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
16x2 – 9y2 = 144
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
21x2 – 4y2 = 84
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
3x2 – y2 = 4
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
x2 – y2 = 16
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
`x^2/100 - y^2/25` = + 1
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
x = 2 sec θ, y = `2sqrt(3) tan theta`
Find the equation of the hyperbola referred to its principal axes:
whose distance between foci is 10 and length of conjugate axis 6
Find the equation of the tangent to the hyperbola:
3x2 – 4y2 = 12 at the point (4, 3)
Find the equation of the tangent to the hyperbola:
`x^2/144 - y^2/25` = 1 at the point whose eccentric angle is `pi/3`
Find the equations of the tangents to the hyperbola 5x2 – 4y2 = 20 which are parallel to the line 3x + 2y + 12 = 0
Select the correct option from the given alternatives
The eccentricity of rectangular hyperbola is
Select the correct option from the given alternatives:
Eccentricity of the hyperbola 16x2 − 3y2 − 32x − 12y − 44 = 0 is
Answer the following:
Find the equation of the hyperbola in the standard form if Length of conjugate axis is 5 and distance between foci is 13.
Answer the following:
Find the equation of the hyperbola in the standard form if eccentricity is `3/2` and distance between foci is 12.
Answer the following:
Find the equation of the hyperbola in the standard form if length of the conjugate axis is 3 and distance between the foci is 5.
Answer the following:
Find the equation of the tangent to the hyperbola `x^2/25 − y^2/16` = 1 at P(30°)
Answer the following:
Find the equations of the tangents to the hyperbola 3x2 − y2 = 48 which are perpendicular to the line x + 2y − 7 = 0
Answer the following:
Two tangents to the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1 make angles θ1, θ2, with the transverse axis. Find the locus of their point of intersection if tan θ1 + tan θ2 = k
If P(x1, y1) is a point on the hyperbola x2 - y2 = a2, then SP. S'P = ______.
Let H: `x^2/a^2 - y^2/b^2` = 1, a > 0, b > 0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is `4(2sqrt(2) + sqrt(14))`. If the eccentricity H is `sqrt(11)/2`, then the value of a2 + 2b2 is equal to ______.
The locus of the midpoints of the chord of the circle, x2 + y2 = 25 which is tangent to the hyperbola, `x^2/9 - y^2/16` = 1 is ______.
A line parallel to the straight line 2x – y = 0 is tangent to the hyperbola `x^2/4 - y^2/2` = 1 at the point (x1, y1). Then `x_1^2 + 5y_1^2` is equal to ______.
The foci of a hyperbola coincide with the foci of the ellipse `x^2/25 + y^2/9` = 1. Find the equation of the hyperbola, if its eccentricity is 2.
(x – 1)2 + (y – 2)2 = `(3(2x + 3y + 2)^2)/13`represents hyperbola whose eccentricity is ______.
The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point of intersection of the lines, 7x + 13y – 87 = 0 and 5x – 8y + 7 = 0, the latus rectum is `32sqrt(2)/5`. The value of `(asqrt(2) + b)` will be ______.
If the radii of director circles of `x^2/a^2 + y^2/b^2` = 1 and `x^2/a^2 - y^2/b^2` = (a > b) are 2r and r respectively, then `e_2^2/e_1^2` is equal to ______.
(where e1, e2 are their eccentricities respectively)
Let a > 0, b > 0. Let e and l respectively be the eccentricity and length of the latus rectum of the hyperbola `x^2/"a"^2 - "y"^2/"b"^2` = 1. Let e' and l' respectively the eccentricity and length of the latus rectum of its conjugate hyperbola. If e2 = `11/14"l'"` and (e')2 = `11/8"l"^'` then the value of 77a + 44b is equal to ______.
The eccentricity of the hyperbola x2 – 3y2 = 2x + 8 is ______.