Advertisements
Advertisements
प्रश्न
Answer the following:
Show that the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24. Find the point of contact
उत्तर
Given equation of the hyperbola is 4x2 − 3y2 = 24.
∴ `x^2/6 - y^2/8` = 1
Comparing this equation with `x^2/"a"^2 - y^2/"b"^2` = 1, we get
a2 = 6 and b2 = 8
Given equation of line is 2x – y = 4
∴ y = 2x – 4
Comparing this equation with y = mx + c, we get
m = 2 and c = – 4
For the line y = mx + c to be a tangent to the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1, we must have
c2 = a2m2 – b2
c2 = (– 4)2 = 16
a2m2 – b2 = 6(2)2 – 8
= 24 – 8
= 16
∴ The given line is a tangent to the given hyperbola and point of contact
= `(- ("a"^2"m")/"c", - "b"^2/"c")`
= `((-6(2))/(-4), (-8)/(-4))`
= (3, 2).
APPEARS IN
संबंधित प्रश्न
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
x2 – y2 = 16
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
`y^2/25 - x^2/144` = 1
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
x = 2 sec θ, y = `2sqrt(3) tan theta`
Find the equation of the hyperbola referred to its principal axes:
whose distance between foci is 10 and eccentricity `5/2`
Find the equation of the hyperbola referred to its principal axes:
whose distance between foci is 10 and length of conjugate axis 6
Find the equation of the hyperbola referred to its principal axes:
whose distance between directrices is `8/3` and eccentricity is `3/2`
Find the equation of the hyperbola referred to its principal axes:
whose length of conjugate axis = 12 and passing through (1, – 2)
Find the equation of the hyperbola referred to its principal axes:
whose vertices are (± 7, 0) and end points of conjugate axis are (0, ±3)
Find the equation of the hyperbola referred to its principal axes:
whose foci are at (±2, 0) and eccentricity `3/2`
Find the equation of the hyperbola referred to its principal axes:
whose length of transverse axis is 8 and distance between foci is 10
Find the equation of the tangent to the hyperbola:
3x2 – y2 = 4 at the point `(2, 2sqrt(2))`
Find the equation of the tangent to the hyperbola:
3x2 – 4y2 = 12 at the point (4, 3)
Find the equation of the tangent to the hyperbola:
`x^2/144 - y^2/25` = 1 at the point whose eccentric angle is `pi/3`
Find the equation of the tangent to the hyperbola:
`x^2/16 - y^2/9` = 1 at the point in a first quadratures whose ordinate is 3
Find the equation of the tangent to the hyperbola:
9x2 – 16y2 = 144 at the point L of latus rectum in the first quadrant
Show that the line 3x – 4y + 10 = 0 is tangent till the hyperbola x2 – 4y2 = 20. Also find the point of contact
Find the equations of the tangents to the hyperbola `x^2/25 - y^2/9` = 1 making equal intercepts on the co-ordinate axes
Find the equations of the tangents to the hyperbola 5x2 – 4y2 = 20 which are parallel to the line 3x + 2y + 12 = 0
Select the correct option from the given alternatives
The eccentricity of rectangular hyperbola is
Select the correct option from the given alternatives:
If the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24, the point of contact is
Select the correct option from the given alternatives:
The foci of hyperbola 4x2 − 9y2 − 36 = 0 are
Answer the following:
Find the equation of the hyperbola in the standard form if length of the conjugate axis is 3 and distance between the foci is 5.
Answer the following:
Find the equation of the tangent to the hyperbola 7x2 − 3y2 = 51 at (−3, −2)
Answer the following:
Find the equation of the tangent to the hyperbola `x^2/25 − y^2/16` = 1 at P(30°)
Answer the following:
Find the equations of the tangents to the hyperbola 3x2 − y2 = 48 which are perpendicular to the line x + 2y − 7 = 0
Answer the following:
Two tangents to the hyperbola `x^2/"a"^2 - y^2/"b"^2` = 1 make angles θ1, θ2, with the transverse axis. Find the locus of their point of intersection if tan θ1 + tan θ2 = k
The eccentricity of the hyperbola 25x2 - 9y2 = 225 is ______.
The locus of the midpoints of the chord of the circle, x2 + y2 = 25 which is tangent to the hyperbola, `x^2/9 - y^2/16` = 1 is ______.
A line parallel to the straight line 2x – y = 0 is tangent to the hyperbola `x^2/4 - y^2/2` = 1 at the point (x1, y1). Then `x_1^2 + 5y_1^2` is equal to ______.
The foci of a hyperbola coincide with the foci of the ellipse `x^2/25 + y^2/9` = 1. Find the equation of the hyperbola, if its eccentricity is 2.
The locus of the mid-point of the chords of the hyperbola `(x^2/a^2) - (y^2/b^2)` = 1 passing through a fixed point (α, β) is a hyperbola with centre at `(α/2, β/2)` It equation is ______.
Let e1 and e2 be the eccentricities of the ellipse, `x^2/25 + y^2/b^2` = 1 (b < 5) and the hyperbola, `x^2/16 - y^2/b^2` = 1 respectively satisfying e1e2 = 1. If α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair (α, β) is equal to ______.
The eccentricity of the hyperbola x2 – 3y2 = 2x + 8 is ______.