मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Select the correct option from the given alternatives: The foci of hyperbola 4x2 − 9y2 − 36 = 0 are - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Select the correct option from the given alternatives:

The foci of hyperbola 4x2 − 9y2 − 36 = 0 are

पर्याय

  • `(± sqrt(13), 0)`

  • `(± sqrt(11), 0)`

  • `(± sqrt(12), 0)`

  • ` (0,± sqrt(12))`

MCQ

उत्तर

The foci of hyperbola 4x2 − 9y2 − 36 = 0 are `(± sqrt(13), 0)`

shaalaa.com
Conic Sections - Hyperbola
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Conic Sections - Miscellaneous Exercise 7 [पृष्ठ १७७]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 7 Conic Sections
Miscellaneous Exercise 7 | Q I. (20) | पृष्ठ १७७

संबंधित प्रश्‍न

Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`x^2/25 - y^2/16` = 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`x^2/25 - y^2/16` = – 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

21x2 – 4y2 = 84


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

x2 – y2 = 16


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`y^2/25 - x^2/9` = 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`y^2/25 - x^2/144` = 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

x = 2 sec θ, y = `2sqrt(3) tan theta`


Find the eccentricity of the hyperbola, which is conjugate to the hyperbola x2 – 3y2 = 3


Find the equation of the hyperbola referred to its principal axes:

whose distance between foci is 10 and eccentricity `5/2`


Find the equation of the hyperbola referred to its principal axes:

whose distance between directrices is `8/3` and eccentricity is `3/2`


Find the equation of the hyperbola referred to its principal axes:

which passes through the points (6, 9) and (3, 0)


Find the equation of the hyperbola referred to its principal axes:

whose vertices are (± 7, 0) and end points of conjugate axis are (0, ±3)


Find the equation of the hyperbola referred to its principal axes:

whose length of transverse and conjugate axis are 6 and 9 respectively


Find the equation of the tangent to the hyperbola:

3x2 – y2 = 4 at the point `(2, 2sqrt(2))`


Find the equation of the tangent to the hyperbola:

3x2 – 4y2 = 12 at the point (4, 3)


Find the equation of the tangent to the hyperbola:

`x^2/16 - y^2/9` = 1 at the point in a first quadratures whose ordinate is 3


Find the equation of the tangent to the hyperbola:

9x2 – 16y2 = 144 at the point L of latus rectum in the first quadrant


If the 3x – 4y = k touches the hyperbola `x^2/5 - (4y^2)/5` = 1 then find the value of k


Find the equations of the tangents to the hyperbola 5x2 – 4y2 = 20 which are parallel to the line 3x + 2y + 12 = 0


Select the correct option from the given alternatives:

If the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24, the point of contact is


Answer the following:

Find the equation of the tangent to the hyperbola `x^2/25 − y^2/16` = 1 at P(30°)


Answer the following:

Find the equations of the tangents to the hyperbola 3x2 − y2 = 48 which are perpendicular to the line x + 2y − 7 = 0


If P(x1, y1) is a point on the hyperbola x2 - y2 = a2, then SP. S'P = ______.


A line parallel to the straight line 2x – y = 0 is tangent to the hyperbola `x^2/4 - y^2/2` = 1 at the point (x1, y1). Then `x_1^2 + 5y_1^2` is equal to ______.


The asymptotes of the hyperbola xy = hx + ky are ______.


The foci of a hyperbola coincide with the foci of the ellipse `x^2/25 + y^2/9` = 1. Find the equation of the hyperbola, if its eccentricity is 2.


The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point of intersection of the lines `x - 3sqrt(5)y` = 0 and `sqrt(5)x - 2y` = 13 and the length of its latus rectum is `4/3` units. The coordinates of its focus are ______.


If the radii of director circles of `x^2/a^2 + y^2/b^2` = 1 and `x^2/a^2 - y^2/b^2` = (a > b) are 2r and r respectively, then `e_2^2/e_1^2` is equal to ______.

(where e1, e2 are their eccentricities respectively)


Let e1 and e2 be the eccentricities of the ellipse, `x^2/25 + y^2/b^2` = 1 (b < 5) and the hyperbola, `x^2/16 - y^2/b^2` = 1 respectively satisfying e1e2 = 1. If α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair (α, β) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×