Advertisements
Advertisements
प्रश्न
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
`x^2/25 - y^2/16` = 1
उत्तर
The equation of the hyperbola is `x^2/25 - y^2/16` = 1
Comparing with `x^2/"a"^2 - y^2/"b"^2` = 1, we get,
a2 = 25, b2 = 16
(1) Length of transverse axis = 2a = 2(5) = 10
(2) Length of conjugate axis = 2b = 2(4) = 8
(3) Eccentricity = e = `sqrt("a"^2 + "b"^2)/"a"`
= `sqrt(25 + 16)/5`
= `sqrt(41)/5`
(4) ae = `5(sqrt(41)/5) = sqrt(41)`
Co-ordinates of foci ≡ (± ae, 0) = `(± sqrt(41), 0)`
(5) `"a"/"e" = 5/((sqrt(41)/5)) = 25/sqrt(41)`
The equations of directrices are
x = `± "a"/"e"` i.e., x = `± 25/sqrt(41)`
(6) Length of latus rectum = `(2"b"^2)/"a"`
= `(2(16))/5`
= `32/5`
APPEARS IN
संबंधित प्रश्न
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
x2 – y2 = 16
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
`y^2/25 - x^2/144` = 1
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
`x^2/100 - y^2/25` = + 1
Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:
x = 2 sec θ, y = `2sqrt(3) tan theta`
Find the eccentricity of the hyperbola, which is conjugate to the hyperbola x2 – 3y2 = 3
If e and e' are the eccentricities of a hyperbola and its conjugate hyperbola respectively, prove that `1/"e"^2 + 1/("e""'")^2` = 1
Find the equation of the hyperbola referred to its principal axes:
whose distance between foci is 10 and eccentricity `5/2`
Find the equation of the hyperbola referred to its principal axes:
whose distance between foci is 10 and length of conjugate axis 6
Find the equation of the hyperbola referred to its principal axes:
whose length of conjugate axis = 12 and passing through (1, – 2)
Find the equation of the hyperbola referred to its principal axes:
whose foci are at (±2, 0) and eccentricity `3/2`
Find the equation of the hyperbola referred to its principal axes:
whose length of transverse axis is 8 and distance between foci is 10
Find the equation of the tangent to the hyperbola:
3x2 – y2 = 4 at the point `(2, 2sqrt(2))`
If the 3x – 4y = k touches the hyperbola `x^2/5 - (4y^2)/5` = 1 then find the value of k
Select the correct option from the given alternatives
The eccentricity of rectangular hyperbola is
Select the correct option from the given alternatives:
Eccentricity of the hyperbola 16x2 − 3y2 − 32x − 12y − 44 = 0 is
Select the correct option from the given alternatives:
The foci of hyperbola 4x2 − 9y2 − 36 = 0 are
Answer the following:
Find the equation of the hyperbola in the standard form if length of the conjugate axis is 3 and distance between the foci is 5.
Answer the following:
Find the equation of the tangent to the hyperbola 7x2 − 3y2 = 51 at (−3, −2)
Answer the following:
Find the equations of the tangents to the hyperbola 3x2 − y2 = 48 which are perpendicular to the line x + 2y − 7 = 0
If P(x1, y1) is a point on the hyperbola x2 - y2 = a2, then SP. S'P = ______.
Let H: `x^2/a^2 - y^2/b^2` = 1, a > 0, b > 0, be a hyperbola such that the sum of lengths of the transverse and the conjugate axes is `4(2sqrt(2) + sqrt(14))`. If the eccentricity H is `sqrt(11)/2`, then the value of a2 + 2b2 is equal to ______.
The locus of the midpoints of the chord of the circle, x2 + y2 = 25 which is tangent to the hyperbola, `x^2/9 - y^2/16` = 1 is ______.
A line parallel to the straight line 2x – y = 0 is tangent to the hyperbola `x^2/4 - y^2/2` = 1 at the point (x1, y1). Then `x_1^2 + 5y_1^2` is equal to ______.
Parametric form of the hyperbola `x^2/4 - y^2/9` = –1 is ______.
The equation of conjugate axis for the hyperbola `(x + y + 1)^2/4 - (x - y + 2)^2/9` = 1 is ______.
The locus of the mid-point of the chords of the hyperbola `(x^2/a^2) - (y^2/b^2)` = 1 passing through a fixed point (α, β) is a hyperbola with centre at `(α/2, β/2)` It equation is ______.
The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point of intersection of the lines, 7x + 13y – 87 = 0 and 5x – 8y + 7 = 0, the latus rectum is `32sqrt(2)/5`. The value of `(asqrt(2) + b)` will be ______.
If the radii of director circles of `x^2/a^2 + y^2/b^2` = 1 and `x^2/a^2 - y^2/b^2` = (a > b) are 2r and r respectively, then `e_2^2/e_1^2` is equal to ______.
(where e1, e2 are their eccentricities respectively)
Let a > 0, b > 0. Let e and l respectively be the eccentricity and length of the latus rectum of the hyperbola `x^2/"a"^2 - "y"^2/"b"^2` = 1. Let e' and l' respectively the eccentricity and length of the latus rectum of its conjugate hyperbola. If e2 = `11/14"l'"` and (e')2 = `11/8"l"^'` then the value of 77a + 44b is equal to ______.
Let e1 and e2 be the eccentricities of the ellipse, `x^2/25 + y^2/b^2` = 1 (b < 5) and the hyperbola, `x^2/16 - y^2/b^2` = 1 respectively satisfying e1e2 = 1. If α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair (α, β) is equal to ______.
The eccentricity of the hyperbola x2 – 3y2 = 2x + 8 is ______.