हिंदी

Answer the following: Find the equation of the hyperbola in the standard form if Length of conjugate axis is 5 and distance between foci is 13. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Find the equation of the hyperbola in the standard form if Length of conjugate axis is 5 and distance between foci is 13.

योग

उत्तर

Let the required equation of hyperbola be

`x^2/"a"^2 - y^2/"b"^2` = 1

Length of conjugate axis = 2b

Given, length of conjugate axis = 5

∴ 2b = 5

∴ b = `5/2`

∴ b2 = `25/4`

Distance between foci = 2ae

Given, distance between foci = 13

∴ 2ae = 13

∴ ae = `13/2`

∴ a2e2 = `169/4`

∴ Now, b2 = a2(e2 – 1)

∴ b2 = a2e2 – a2

∴ `25/4 = 169/4` – a2

∴ a2 = `169/4 - 25/4`

∴ a2 =  `144/4` = 36

∴ The required equation of hyperbola is

`x^2/36 - y^2/(25/4)` = 1,

i.e., `x^2/36 - (4y^2)/25` = 1

shaalaa.com
Conic Sections - Hyperbola
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Conic Sections - Miscellaneous Exercise 7 [पृष्ठ १७८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 7 Conic Sections
Miscellaneous Exercise 7 | Q II. (22) (i) | पृष्ठ १७८

संबंधित प्रश्न

Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`x^2/25 - y^2/16` = – 1


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

16x2 – 9y2 = 144


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

21x2 – 4y2 = 84


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

3x2 – y2 = 4


Find the length of transverse axis, length of conjugate axis, the eccentricity, the co-ordinates of foci, equations of directrices and the length of latus rectum of the hyperbola:

`y^2/25 - x^2/9` = 1


Find the eccentricity of the hyperbola, which is conjugate to the hyperbola x2 – 3y2 = 3


Find the equation of the hyperbola referred to its principal axes:

whose distance between foci is 10 and eccentricity `5/2`


Find the equation of the hyperbola referred to its principal axes:

whose distance between foci is 10 and length of conjugate axis 6


Find the equation of the hyperbola referred to its principal axes:

whose distance between directrices is `8/3` and eccentricity is `3/2`


Find the equation of the hyperbola referred to its principal axes:

which passes through the points (6, 9) and (3, 0)


Find the equation of the hyperbola referred to its principal axes:

whose foci are at (±2, 0) and eccentricity `3/2`


Find the equation of the hyperbola referred to its principal axes:

whose length of transverse and conjugate axis are 6 and 9 respectively


Find the equation of the hyperbola referred to its principal axes:

whose length of transverse axis is 8 and distance between foci is 10


Find the equation of the tangent to the hyperbola:

3x2 – 4y2 = 12 at the point (4, 3)


Find the equation of the tangent to the hyperbola:

`x^2/144 - y^2/25` = 1 at the point whose eccentric angle is `pi/3`


Find the equation of the tangent to the hyperbola:

9x2 – 16y2 = 144 at the point L of latus rectum in the first quadrant


Select the correct option from the given alternatives

The eccentricity of rectangular hyperbola is


Select the correct option from the given alternatives:

If the line 2x − y = 4 touches the hyperbola 4x2 − 3y2 = 24, the point of contact is


Select the correct option from the given alternatives:

The foci of hyperbola 4x2 − 9y2 − 36 = 0 are


Answer the following:

For the hyperbola `x^2/100−y^2/25` = 1, prove that SA. S'A = 25, where S and S' are the foci and A is the vertex


Answer the following:

Find the equation of the tangent to the hyperbola 7x2 − 3y2 = 51 at (−3, −2)


Answer the following:

Find the equation of the tangent to the hyperbola x = 3 secθ, y = 5 tanθ at θ = `pi/3`


Answer the following:

Find the equation of the tangent to the hyperbola `x^2/25 − y^2/16` = 1 at P(30°)


Answer the following:

Find the equations of the tangents to the hyperbola 3x2 − y2 = 48 which are perpendicular to the line x + 2y − 7 = 0


The locus of the midpoints of the chord of the circle, x2 + y2 = 25 which is tangent to the hyperbola, `x^2/9 - y^2/16` = 1 is ______.


The asymptotes of the hyperbola xy = hx + ky are ______.


The foci of a hyperbola coincide with the foci of the ellipse `x^2/25 + y^2/9` = 1. Find the equation of the hyperbola, if its eccentricity is 2.


The locus of the mid-point of the chords of the hyperbola `(x^2/a^2) - (y^2/b^2)` = 1 passing through a fixed point (α, β) is a hyperbola with centre at `(α/2, β/2)` It equation is ______.


Let the hyperbola H : `x^2/a^2 - y^2/b^2` = 1 pass `(2sqrt(2), -2sqrt(2))`. A parabola is drawn whose focus is same as the focus of H with positive abscissa and the directrix of the parabola passes through the other focus of H. If the length of the latus rectum of the parabola is e times the length of the latus rectum of H, where e is the eccentricity of H, then which of the following points lies on the parabola?


Let a > 0, b > 0. Let e and l respectively be the eccentricity and length of the latus rectum of the hyperbola `x^2/"a"^2 - "y"^2/"b"^2` = 1. Let e' and l' respectively the eccentricity and length of the latus rectum of its conjugate hyperbola. If e2 = `11/14"l'"` and (e')2 = `11/8"l"^'` then the value of 77a + 44b is equal to ______.


Let e1 and e2 be the eccentricities of the ellipse, `x^2/25 + y^2/b^2` = 1 (b < 5) and the hyperbola, `x^2/16 - y^2/b^2` = 1 respectively satisfying e1e2 = 1. If α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair (α, β) is equal to ______.


For the Hyperbola `x^2/(cos^2α) - y^2/(sin^2α)` = 1, which of the following remains constant when α varies = ?


The hyperbola `x^2/a^2 - y^2/b^2` = 1 passes through the point `(3sqrt(5), 1)` and the length of its latus rectum is `4/3` units. The length of the conjugate axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×