Advertisements
Advertisements
प्रश्न
सिद्ध कीजिए कि एक त्रिभुज के किसी कोण का समद्विभाजक और उसकी सम्मुख भुजा का लंब समद्विभाजक, यदि प्रतिच्छेद करते हैं तो, उस त्रिभुज के परिवृत्त पर प्रतिच्छेद करते हैं।
उत्तर
दिया गया है - ΔABC एक वृत्त के अंतर्गत है। ∠A का समद्विभाजक और BC का लंब समद्विभाजक बिंदु Q पर प्रतिच्छेद करता है।
सिद्ध करना है - A, B, Q और C संचक्रीय हैं।
रचना - BQ और QC को मिलाइए।
उपपत्ति - हमने माना है कि, Q वृत्त के बाहर स्थित है।
∆BMQ और ∆CMQ में,
BM = CM ...[QM BC का लंबवत द्विभाजक है।]
∠BMQ = ∠CMQ ...[प्रत्येक 90°]
MQ = MQ ...[सामान्य पक्ष]
∴ ΔBMQ ≅ ΔCMQ ...[SAS सर्वांगसमता नियम द्वारा]
∴ BQ = CQ [CPCT द्वारा] ...(i)
साथ ही, ∠BAQ = ∠CAQ [दिया गया है।] ...(ii)
समीकरण (i) और (ii) से,
हम कह सकते हैं कि Q वृत्त पर स्थित है। ...[वृत्त की समान जीवाएँ परिधि पर समान कोण बनाती हैं।]
अतः, A, B, Q और C अचक्रीय हैं।
अतः सिद्ध हुआ।
APPEARS IN
संबंधित प्रश्न
आकृति में, केंद्र O वाले एक वृत्त पर तीन बिन्दु A, B और C इस प्रकार हैं कि ∠BOC = 30० तथा ∠AOB = 60० है। यदि चाप ABC के अतिरिक्त वृत्त पर D एक बिंदु है, तो ∠ADC ज्ञात कीजिए।
आकृति में, ∠ABC = 69° और ∠ACB = 31° हो, तो ∠BDC ज्ञात कीजिए।
निम्नलिखित आकृति में, यदि AOB एक व्यास है और ∠ADC = 120° है, तो ∠CAB = 30° है।
AB और AC एक वृत्त की दो बराबर जीवाएँ हैं। सिद्ध कीजिए कि ∠BAC का समद्विभाजक वृत्त के केंद्र से होकर जाता है।
निम्नलिखित आकृति में, ∠ADC = 130° और जीवा BC = जीवा BE है। ∠CBE ज्ञात कीजिए।
निम्नलिखित आकृति में, AOB वृत्त का व्यास है तथा C, D और E अर्धवृत्त पर स्थित कोई तीन बिंदु हैं। ∠ACD + ∠BED का मान ज्ञात कीजिए।
निम्नलिखित आकृति में, ∠OAB = 30° और ∠OCB = 57° है। ∠BOC और ∠AOC ज्ञात कीजिए।
एक वृत्त की दो बराबर AB और CD जीवाएँ बढ़ाने पर बिंदु P पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि PB = PD है।
AB और AC त्रिज्या r वाले एक वृत्त की दो जीवाएँ इस प्रकार हैं कि AB = 2AC है। यदि p और q क्रमश : केंद्र से AB और AC की दूरियाँ हैं, तो सिद्ध कीजिए कि 4q2 = p2 + 3r2 है।
निम्नलिखित आकृति में, O वृत्त का केंद्र है, BD = OD और CD ⊥ AB है। ∠CAB ज्ञात कीजिए।