मराठी

Sides of a triangle are in the ratio of 12 : 17 : 25 and its perimeter is 540 cm. Find its area. - Mathematics

Advertisements
Advertisements

प्रश्न

Sides of a triangle are in the ratio of 12 : 17 : 25 and its perimeter is 540 cm. Find its area.

बेरीज

उत्तर

Let the common ratio between the sides of the given triangle be x.

Therefore, the side of the triangle will be 12x, 17x, and 25x.

Perimeter of this triangle = 540 cm

12x + 17x + 25x = 540 cm

54x = 540 cm

x = 10 cm

Sides of the triangle will be 120 cm, 170 cm, and 250 cm.

s = `"perimeter of triangle"/2`

= `540/2`

= 270 cm

By Heron's formula,

Area of triangle = `sqrt(s(s-a)(s-b)(s-c))`

= `[sqrt(270(270-120)(270-170)(270-250))]cm^2`

= `[sqrt(270xx150xx100xx20)]cm^2`

= `sqrt(10^2 xx 10^2 xx 3^2 xx 3^2 xx 5^2 xx 2^2)  cm^2`

= (10 × 10 × 3 × 3 × 5 × 2) cm2

= 9,000 cm2

Therefore, the area of this triangle is 9,000 cm2.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Heron's Formula - Exercise 12.1 [पृष्ठ २०३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
पाठ 12 Heron's Formula
Exercise 12.1 | Q 5 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×