मराठी

An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm. Find the area of the triangle. - Mathematics

Advertisements
Advertisements

प्रश्न

An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm. Find the area of the triangle.

बेरीज

उत्तर

Let the sides of an isosceles triangle be a = 12 cm, b = 12 cm, c = x cm

Since the perimeter of the triangle = 30 cm

∴ 12 cm + 12 cm + x cm = 30 cm

⇒ x = (30 − 24) = 6

Now, semi-perimeter, s = `30/2` cm = 15 cm

∴ Area of the triangle = `sqrt(s(s - a)(s - b)(s - c))`

= `sqrt(15(15-12)(15-12)(15-6))  cm^2`

= `sqrt(15 xx 3 xx 3 xx 9)  cm^2`

=  `sqrt(15 xx 3 xx 3 xx 3 xx 3 xx 3)  cm^2`

= `sqrt(3^2 xx 3^2 xx 3 xx 5)  cm^2`

= `3 xx 3 xx sqrt(3 xx 5)  cm^2`

= `9sqrt15  cm^2`

Thus, the required area of the triangle is `9sqrt15  cm^2`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Heron's Formula - Exercise 12.1 [पृष्ठ २०३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 9
पाठ 12 Heron's Formula
Exercise 12.1 | Q 6 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×