рдорд░рд╛рдареА

The Perimeter of a Triangular Field is 240 Dm. If Two of Its Sides Are 78 Dm and 50 Dm, Find the Length of the Perpendicular on the Side of Length 50 Dm from the Opposite Vertex. - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

The perimeter of a triangular field is 240 dm. If two of its sides are 78 dm and 50 dm, find the length of the perpendicular on the side of length 50 dm from the opposite vertex.

рдЙрддреНрддрд░

ABC be the triangle, Here a = 78 dm = AB,
BC = b = 50 dm

Now, perimeter = 240 dm
⇒ AB + BC + CA = 240 dm
⇒ AC = 240 – BC – AB
⇒ AC = 112 dm
Now, 2s = AB + BC + CA
⇒ 2s = 240
⇒ s = 120 dm

∴ Area of ΔABC =`sqrt(s(s-a)(s-b)(s-b))` by heron's formula 

=`sqrt(120(120-78)(120-50)(120-112))`

`=sqrt(120xx42xx70xx8)`

1680 `dm^2`

ЁЭР┐ЁЭСТЁЭСб ЁЭР┤ЁЭР╖ ЁЭСПЁЭСТ ЁЭСЭЁЭСТЁЭСЯЁЭСЭЁЭСТЁЭСЫЁЭССЁЭСЦЁЭСРЁЭСвЁЭСОЁЭСЩЁЭСОЁЭСЯ ЁЭСЬЁЭСЫ ЁЭР╡ЁЭР╢

Area of ΔABC = `1/2xx ABxxBC `(area of triangle=`(1/2xxbxxh)`

`=1/2xx ADxxBC=1680 `

`⇒AD=(2xx1680)/50=67.2dm`

shaalaa.com
  рдпрд╛ рдкреНрд░рд╢реНрдирд╛рдд рдХрд┐рдВрд╡рд╛ рдЙрддреНрддрд░рд╛рдд рдХрд╛рд╣реА рддреНрд░реБрдЯреА рдЖрд╣реЗ рдХрд╛?
рдкрд╛рда 17: HeronтАЩs Formula - Exercise 17.1 [рдкреГрд╖реНрда рео]

APPEARS IN

рдЖрд░рдбреА рд╢рд░реНрдорд╛ Mathematics [English] Class 9
рдкрд╛рда 17 HeronтАЩs Formula
Exercise 17.1 | Q 7 | рдкреГрд╖реНрда рео

рд╡реНрд╣рд┐рдбрд┐рдУ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [1]

Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×