English

The Perimeter of a Triangular Field is 240 Dm. If Two of Its Sides Are 78 Dm and 50 Dm, Find the Length of the Perpendicular on the Side of Length 50 Dm from the Opposite Vertex. - Mathematics

Advertisements
Advertisements

Question

The perimeter of a triangular field is 240 dm. If two of its sides are 78 dm and 50 dm, find the length of the perpendicular on the side of length 50 dm from the opposite vertex.

Solution

ABC be the triangle, Here a = 78 dm = AB,
BC = b = 50 dm

Now, perimeter = 240 dm
⇒ AB + BC + CA = 240 dm
⇒ AC = 240 – BC – AB
⇒ AC = 112 dm
Now, 2s = AB + BC + CA
⇒ 2s = 240
⇒ s = 120 dm

∴ Area of ΔABC =`sqrt(s(s-a)(s-b)(s-b))` by heron's formula 

=`sqrt(120(120-78)(120-50)(120-112))`

`=sqrt(120xx42xx70xx8)`

1680 `dm^2`

๐ฟ๐‘’๐‘ก ๐ด๐ท ๐‘๐‘’ ๐‘๐‘’๐‘Ÿ๐‘๐‘’๐‘›๐‘‘๐‘–๐‘๐‘ข๐‘Ž๐‘™๐‘Ž๐‘Ÿ ๐‘œ๐‘› ๐ต๐ถ

Area of ΔABC = `1/2xx ABxxBC `(area of triangle=`(1/2xxbxxh)`

`=1/2xx ADxxBC=1680 `

`⇒AD=(2xx1680)/50=67.2dm`

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Heronโ€™s Formula - Exercise 17.1 [Page 8]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 17 Heronโ€™s Formula
Exercise 17.1 | Q 7 | Page 8

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishเคนเคฟเค‚เคฆเฅ€เคฎเคฐเคพเค เฅ€


      Forgot password?
Use app×