English

The Perimeter of a Triangle is 300 M. If Its Sides Are in the Ratio 3 : 5 : 7. Find the Area of the Triangle ? - Mathematics

Advertisements
Advertisements

Question

The perimeter of a triangle is 300 m. If its sides are in the ratio 3 : 5 : 7. Find the area of the triangle ?

Solution

Given that
The perimeter of a triangle = 300 m
The sides of a triangle in the ratio 3 : 5 : 7
Let 3x, 5x, 7x be the sides of the triangle
Perimeter ⇒ 2s = a + b + c
⇒ 3x + 5x + 17x = 300
⇒ 15x = 300
⇒ x = 20m
The triangle sides are a = 3x
= 3 (20)m = 60 m
b = 5x = 5(20) m = 100m
c = 7x = 140 m

semi perimeter s = `(a+b+c+)/2`

`=(300)/2m`

`=150m`

∴The area of the triangle `=sqrt(s(s-a)(s-b)(s-c))`

`=sqrt(150(150-60)(150-100)(150-140))`

`=sqrt(150xx10xx90xx50)`

`=sqrt(1500xx1500)     3 cm^2`

`∴Δ` le Area = 1500 `sqrt3 cm^2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Heron’s Formula - Exercise 17.1 [Page 8]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 17 Heron’s Formula
Exercise 17.1 | Q 6 | Page 8

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×