English

An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm. Find the area of the triangle. - Mathematics

Advertisements
Advertisements

Question

An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm. Find the area of the triangle.

Sum

Solution

Let the sides of an isosceles triangle be a = 12 cm, b = 12 cm, c = x cm

Since the perimeter of the triangle = 30 cm

∴ 12 cm + 12 cm + x cm = 30 cm

⇒ x = (30 − 24) = 6

Now, semi-perimeter, s = `30/2` cm = 15 cm

∴ Area of the triangle = `sqrt(s(s - a)(s - b)(s - c))`

= `sqrt(15(15-12)(15-12)(15-6))  cm^2`

= `sqrt(15 xx 3 xx 3 xx 9)  cm^2`

=  `sqrt(15 xx 3 xx 3 xx 3 xx 3 xx 3)  cm^2`

= `sqrt(3^2 xx 3^2 xx 3 xx 5)  cm^2`

= `3 xx 3 xx sqrt(3 xx 5)  cm^2`

= `9sqrt15  cm^2`

Thus, the required area of the triangle is `9sqrt15  cm^2`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Heron's Formula - Exercise 12.1 [Page 203]

APPEARS IN

NCERT Mathematics [English] Class 9
Chapter 12 Heron's Formula
Exercise 12.1 | Q 6 | Page 203

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×