Advertisements
Advertisements
Question
The triangular side walls of a flyover have been used for advertisements. The sides of the walls are 122m, 22m, and 120m (see the given figure). The advertisements yield an earning of ₹ 5000 per m2 per year. A company hired one of its walls for 3 months. How much rent did it pay?
Solution
The sides of the triangle (i.e., a, b, c) are 122 m, 22 m, and 120 m, respectively.
Perimeter of triangle = (122 + 22 + 120) m
2s = 264 m
s = 132 m
By Heron’s formula,
Area of triangle = `sqrt(s(s-a)(s-b)(s-c))`
Area of given triangle = `[sqrt(132(132-122)(132-22)(132-120))]m^2`
= `[sqrt(132(10)(110)(12))]m^2 = 1320m^2`
Rent of 1 m2 area per year = ₹ 5000
Rent of 1 m2 area per month = `₹ 5000/12`
Rent of 1320 m2 area for 3 months
= `₹ (5000/12xx3xx1320)`
= ₹ (5000 × 330)
= ₹ 16,50,000
Therefore, the company had to pay ₹ 16,50,000.
APPEARS IN
RELATED QUESTIONS
The perimeter of a triangular field is 240 dm. If two of its sides are 78 dm and 50 dm, find the length of the perpendicular on the side of length 50 dm from the opposite vertex.
A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are 13 cm, 14 cm and 15 cm and the parallelogram stands on the base 14 cm, find the height of the parallelogram.
Find the areas of the given plot. (All measures are in metres.)
Find the area of the triangle formed by the points
(1, – 1), (– 4, 6) and (– 3, – 5)
The area of triangle formed by the points (− 5, 0), (0, – 5) and (5, 0) is
Using Heron’s formula, find the area of a triangle whose sides are 10 cm, 24 cm, 26 cm
The sides of the triangular ground are 22 m, 120 m and 122 m. Find the area and cost of levelling the ground at the rate of ₹ 20 per m2
Find the area of an equilateral triangle whose perimeter is 180 cm
An advertisement board is in the form of an isosceles triangle with perimeter 36 m and each of the equal sides are 13 m. Find the cost of painting it at ₹ 17.50 per square metre.
The perimeter of an isosceles triangle is 32 cm. The ratio of the equal side to its base is 3 : 2. Find the area of the triangle.